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Abstract

The agent-based approach views an organization as a collection of agents, interagting
with one another in their pursuit of assigned tasks. The performance of an organization
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in this framework is determined by the formal and informal structures of interactioss
among agents, which define the lines of communication, allocation of informatisn
processing tasks, distribution of decision-making authorities, and the provision of incen-

tives. This chapter provides a synthesis of various agent-based models of organizations
and surveys some of the new insights that are being delivered. The ultimate goat is
to introduce the agent-based approach to economists in a methodological mannessand
provide a broader and less idiosyncratic perspective to those who are already ergag-
ing in this line of work. The chapter is organized around the set of research questins
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1 The issues addressed in this section are closely related to the concéamssén and Ostrom (2005) 43
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that are common to this literature: (1) What are the determinants of organizationaltbe-
havior and performance? (2) How does organizational structure influence performance?
(3) How do the skills and traits of agents matter and how do they interact with structuse?
(4) How do the characteristics of the environment—including its stability, complexity,
and competitiveness—influence the appropriate allocation of authority and informa-
tion? (5) How is the behavior and performance influenced when an organization is
coevolving with other organizations from which it can learn? (6) Can an organization

evolve its way to a better structure? 8
9
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1. Introduction 1
2

An organization is a collection of agents that interact and produce some formsof
output. Formal organizations—such as corporations and governments—are typically
constructed for an explicit purpose though this purpose needn't be shared by all organi-
zational members. An entrepreneur who creates a firm may do so in order to genérate
personal wealth but the worker she hires may have very different goals. As opposed
to more amorphous collections of agents such as friendship networks and societiés at
large, organizations have a formal structure to them (though informal structures typi-
cally emerge as well) with the prototypical example being a corporation’s organizatiotfal
chart. This structure serves to define lines of communication and the distributiortiof
decision-making. Organizations are also distinguished by their well-defined bounda¥ies
as reflected in a clear delineation as to who is and who is not a member. This boudhd-
ary serves to make organizations a natural unit of selection; for example, corporatiéns
are formed and liquidated though they can also morph into something different throtigh
activities like mergers. 16

The primary task of organization theory is to understand how organizations beh&ve
and to identify and describe the determinants of organizational perforrddiodake an 18
agent-based approach means not having to assign an objective to an organization #nd
instead modelling the agents that comprise it with explicit attention to how decisidhs
are made and how the interaction of these decisions produce organizational output2The
smallest decision-making unit is then required to be smaller than the organization itself.
The anthropomorphic view associated with the theory of the firm—firms are profi¥-
maximizers—is not an agent-based model. Though neoclassical economics has Afany
agent-based models of organizations, including agency theory and team theory, these
models are generally quite restrictive in terms of the assumptions placed on agentbe-
havior, the number and heterogeneity of agents, the richness of the interaction anibng
agents, and the features of the environment. These restrictions are forced upon schdlars
by virtue of the limited power of analytical methods. To derive universal results (“prof#-
ing” them) requires limiting the size of one’s universe (the class of models). White
some structures are relatively simple in their real form (for example, many auctiors),
organizations are inherently complex; they are their own brand of society, plagued \th
conflicting interests while dealing with multi-faceted problems amidst a coevolving -
vironment. Proving universal results is only achieved at the cost of severely restricfihg
the richness of the setting. 35

A computational agent-based model uses the power of computing to “solve” a mod#l.
A model is written down, parameter values are specified, random variables are realiZed,
and, according to agents’ behavioral rules, agent output is produced. Organizati&hal

output comes from the specified mapping from the environment and agents’ acti®ns
40

41

2A thoughtful statement as to what is an organization and what organization theory is about can be fdénd
in Aldrich (1999) 43
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into the output space. At the end of vast CPU time, the simulation output can yield
results that are rich and insightful but ultimately are a collection of examples, per-
haps many examples—thousands of periods, hundreds of runs, dozens of parameter
configurations—but still noticeably finite. In deploying numerical methods, the pre-
sumption is that the model is unsolvable by the human mind (in practice, not necessarily
in principle). If the use of computing power is not to reflect laziness or ineptness on ¢he
modeler’s part, a computational agent-based model must then have some minimum tevel
of complexity—whether due to agent heterogeneity, the structure of interactions améng
agents, a poorly behaved environment, dynamics, or some other feature. A legitirhate
computational agent-based model is then not simply one that is solved by a computer
but rather one for which it is necessary that it be solved by a computer. 1
Organization theory is traditionally of two varieties: (i) broad, institutionally richt2
and vague while using informal arguments articulated in a narrative; and (ii) narrégv,
simplistic, and mathematically precise while using formal logic articulated in a seti6f
assumptions, a statement of a theorem, and a proof. The appeal of computational #aod-
elling is that it achieves middle ground in that it has the precision of (ii) and the ability o
handle a rich set of features as with (i). It trades off the universality of results of (ii) for
a richer model while maintaining rigor and formality. This trade-off is generally judgéed
to be a good one when it comes to modelling a complex entity such as an organizafin.
In writing this chapter, the hope is to describe to the reader the central research ifes-
tions addressed, synthesize the models and methods deployed, and survey some %f the
new insight being delivered. Given the incipiency of this literature, what we will nét
provide is a coherent set of results because such has not yet emerged. Work on €om-
putational agent-based models of organizations is very much in the exploratory piase
with highly varied approaches to pursuing a broad range of questions. Our objectiv& is
to introduce it to economists in a methodological manner and provide a broader and3ess
idiosyncratic perspective to those who are already engaging in this type of work. 27
Before launching into specific models, let us offer a quick review of some of the
guestions addressed by research so that these can frame the reader's mind. Wh#t are
the determinants of organizational behavior and performance? How does organizatiSnal
structure influence performance? How do the skills and traits of agents matter and flow
do they interact with structure? What determines whether more skilled agents aritl a
more decentralized structure are complements or substitutes? What is the propefbal-
ance of exploration and exploitation? How do the characteristics of the environmenit—
including its stability, complexity, and competitiveness—influence the appropriate aft®-
cation of authority and information? How is behavior and performance influenced wkén
an organization is coevolving with other organizations from which it can learn? Can®n

organization evolve its way to a better structure? 38
39

40

3 Not all computational models of organizations are agent-ba3expll and Harrison (199&)eing an ex-
ample. Their formulation begins not with a specification of agents but rather a system of equations descrﬂ?ing
hiring, socialization, and turnover. 43
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1.1. Related literatures 1

2
There are a number of closely related literatures that will not be covered here. A more
complete treatment of agent-based models of organizations would discuss the extemsive
literature in neoclassical economics on organizatibfbese models are rich in their s
modelling of incentives but mired in poverty when it comes to modelling agent heteso-
geneity, the cognitive limitations of agents, organizational structure, and the coevolving
nature of a population of organizations. A second related literature is on networks,sfor
implicit in any non-degenerate model of an organization is a network which describes
how agents communicate and influence each other. As there are two other chaptags in
this handbook devoted to networkegriend, 2005; Wilhite, 2005 we will generally 11
exclude such work other than that which is specifically designed to understand organi-
zations. Thirdly is work on distributed artificial intelligence which develops better ways
to solve problems through the distribution of tasks among agemisile some of these 14
models have something meaningful to say regarding the questions of this chapter;sthe
ultimate objective is quite different. For example, as the objective is developing mege
efficient solutions rather than better explaining organizations, it is common to assyme
agents’ goals coincide with the organizational goal. Finally, there is the line of wogk
best referred to as organizational engineering. This research develops a relatively litgral
description of an organization which can then be calibrated and simulated to proyjde
quantitative answers to policy questions. As a result, the models are not designeg to
provide qualitative insight and have different objectives from the work that is reviewgd
here. At the risk of unfairly over-generalizing, organizational engineering models gfe
designed for prediction, not explanation. ”

As to other review articles, the Introductionltomi and Larsen (20019ffers a most .
enlightening historical perspective that draws on many scholarly antecedents. Thgre-
view article closest to what we are doing her€arley and Gasser (1998jough they
give emphasis to organizational engineerisgrensen (2002)rovides a nice review
of organizational models based on tHi-approachKauffman, 1993 and cellular au-
tomata. One of the best papers that discusses the general topic of complexity and fow
it relates to issues in organization theorydarroll and Burton (2000)Collections of
papers dealing with computational organization theory (not just agent-based modelljng)
includeBaum and Singh (1994 arley and Prietula (1994Cohen and Sproull (1996) %
Prietula et al. (1998)andLomi and Larsen (2001)Also seeBaum (2002)or general
work on organizations with several entries dealing with computational modelling.

27

34
35
1.2. Roadmap and a guide for neoclassical economists zj
A synthesis of the central features of computational agent-based models of orgséni—

zations is provided in SectioB. The literature itself is partitioned according to the®®
40

4 Holmstrom and Tirole (1989Milgrom and Roberts (1992pndPrendergast (1999ffer good general “

treatments.
5 see, for exampléhurfee (1999andMackie-Mason and Wellman (2005) 43

42
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basic task with which an organization is faced. Sec8dacuses on models for which 1
organizations search and learn; it represents the most well-developed body of work.
Section4 looks into modelling the processing of information which is, roughly speak-
ing, a production function for organizational decision-making. Thus far, models are a
bit mechanical and the literature is not as developed. While these two research strands
make up the bulk of the literature, other issues are tackled and Séatiescribes the 6
best work on some of the more important organizational issues not covered in S8ctiohs
and 4 A critical appraisal is provided in Sectidhwhere we also identify some lines 8
for future work. o

For the neoclassical economist largely unfamiliar with computational agent-based
modelling, we recommend focusing on Sectiéhand 3 Section2 introduces many 11
concepts and elements of this modelling approach and, in its final subsection, conttasts
neoclassical and computational agent-based models and suggests why a neoclaSsical
economist should be interested in these methods. The search and learning literatuté re-
viewed in SectiorB is the closest in style to that conducted by neoclassical economists
and, in addition, we take the opportunity to begin synthesizing existing results and cén-
trasting the associated insight with what one would get using a neoclassical approéch.
We ask: What do we learn from the computational agent-based approach that we wtuld

not have learned from using the neoclassical approach? 19
20

21
22
23

2. How to model an organization

How can intelligence emerge from nonintelligence? To answer that, we’ll show”*
that you can build a mind from many little parts, each mindless by itseffhese ~ *°
we'll call agents. Each mental agent by itself can only do some simple thing thaf®
needs no mind or thought at all. Yet when we join these agents in societies—iA’
certain very special ways—this leads to true intelligend&ariin Minsky, The
Society of Mind (1986), p. 17.

29
30
The typical neoclassical description of a firm—the organization that has drawn the
most attention within economics—is as a profit-maximizing entity. Being a single-agent
formulation, it represents a rather uninteresting model of an organiZagimilarly, 33
there are models in the agent-based literature, such as the early wadviathal 34
(1997) that model an organization as a single agent adaptively learning. However, tashe
a meaningful agent-based model of an organization, an agent must be “smaller” tharsthe
organization itself. But then, how does organizational behavior emerge from a colkec-
tion of agents making choices? Just as Marvin Minsky asks how mindless components
can form a mind and produce intelligence, we ask how agents—representing husaan
40
41

6 Though no economist would see the theory of the firm as a model of an organization, this misses the ﬁgint.
The theory of the firm is used to make predictions about corporations argatrganizations. 43
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actors—can form an organization and produce output beyond the capacity of any indi-
vidual agent. 2
This section is divided into five parts. The first part reviews the concept of an agent.

An agent represents the smallest decision-making unit of an organization. Next we #urn
to examining the various dimensions of an organization; what transforms a collection of
agents into an organization? The third section describes the environment into which an
organization is placed and the task with which it is presented. The fourth section offets a
brief discussion on computationally implementing an agent-based organizational madel.
In the final section, this approach is contrasted with the more standard approach in
economics. 10

11

2.1. Agents 12
13

There are many definitions of an “agent” in the agent-based literature. An agent*is
said to be purposeful, autonomous, adaptive, and so on. While these terms ser¥e to
convey a sense of what the researcher is after, they only shift the question of “what
is an agent?” to “what does it mean to be purposeful? autonomous? adaptive?” Per-
haps the best we can do is to describe our intent—what is this thing called an adfent
suppose to represent?—and what we actually do—how is an agent instantiated? In
almost all models of organizations, an agent represents a flesh-and-blood hBean. 20
ing purposeful may mean adjusting behavior to improve some measure of well-beffg;
being autonomous may mean choosing actions even if they are in conflict with an?ér-
ganizational goal; being adaptive may mean modifying behavior in response to gast
experiences. Though the terms are vague, the way in which they are implemented¢thas
substantive content. 25

The neoclassical approach in economics to modelling agents takes preferencegand
beliefs as primitives. Typically, an agent is endowed with a utility function and, givéh
beliefs over that which is unknown to the agent, acts to maximize expected utility Br,
in an intertemporal setting, the expectation of the discounted sum of utility. When?Zan
agent is making choices in a multi-agent context and what is best depends on \#hat
others do—and this certainly describes an organization—this approach is augmetited
with the (Bayes—Nash) equilibrium assumption that each agent understands how &ther
agents behave. This doesn’'t necessarily mean that agents know exactly what other&wiill
do but they do know other agents’ decision rules—how private information maps ifto
actions. Agents have complete understanding though may lack complete informatich.

In contrast to the assumption of a hyper-rational agent, it is standard in the comptfta-
tional agent-based literature to assume agents are boundedly rational. The most coticise
statement of this modelling approach is that agents engage in adaptive search suBject

to various cognitive constraints (and not just informational constraints). These modéls
40

41

7 This needn't be the case for, in actual organizations, agents can be software such as expert syste‘i%s or
automated bidding rules at auctions. 43
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may continue to deploy the optimization framework though assuming myopic optimiza-
tion and that beliefs are empirically-based rather than the product of understanding what
is optimal behavior for others. Agents observe but do not necessarily theorize. Forsex-
ample, a common specification is that an agent engages in hill-climbing as it adopts a
new alternative when doing so yields higher current performance than the previoasly
selected actionGhang and Harrington, 20R00r the optimization framework may be &
entirely discarded as preferences and beliefs are replaced with behavioral rules cast as
primitives. For example, in information processing models, an agent receives datasand
is endowed with a rule that converts it into a lower-dimensional message sent to the fext
agent in line Carley, 1992; Barr and Saraceno, 202 10
Within this bounded rationality framework, models often provide a parameter by
which one can “tune” the cognitive skills of an agent. When rules adapt to experienee,
a key parameter is how much experience an agent has as well as the size of mem-
ory (Carley, 1992. In the context of information dissemination, the likelihood that am
agent observes an innovation reflects a level of skkCanio and Watkins, 1998 15
For hill-climbing algorithms, agents may only evaluate alternatives imperfectly—less
skilled agents may have noisier evaluatioBténg and Harrington, 1997or are con- 17
strained in the set of alternatives—more skilled agents are able to consider optionstin a
wider neighborhood around their current practideslifnan et al., 2000 A novel and 19
promising approach is to assume that an agent has a “model” of how actions mapanto
performance but where the model is of lower dimensionality than red@igyétti and 21
Levinthal, 2000. 22

23

2.2. Organizations 24
25

Let us now turn to the issue of what transforms a collection of agents into an organi-
zation. Our discussion is organized along three questions. Who comprises an orgaeiza-
tion? How are agents connected to produce organizational output? And, how are agents
motivated? 29

An organization is comprised of multiple agents and indeed one common questio#®in
the literature is how the number of agents influences organizational performance.3But
more than pure numbers is relevant, especially when agents are heterogeneous. #here
is an architecture to organizations, which we will elaborate upon momentarily, whish
raises questions of how agents are distributed across various units and how agents are
matched to tasks. Given the often significant role to agent heterogeneity in compgga-
tional agent-based models, it is surprising that there is little research exploring lew
agents with different skills are distributed across the different levels of an organization.
This is an area begging for work. 38

Organizational structure is another one of those terms that has defied a commonede-
finition. A broad but useful one refers to it as “those aspects of the pattern of behavéor
in an organization that are relatively stable and that change only sldMgtch and 41
Simon, 1958, p. 170Under the rubric of organizational structure, we will place three
dimensions. First, there is the allocation of information. This refers to how informatiem
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moves between the environment and the organization—which agents receive data from
the environment—and how it moves within the organization—who reports to whom.
This may have a fairly stable component to it, as might be described by the rule$ of
communication laid out in an organizational chart. Such well-defined flows are a cam-
mon feature of information processing modelsiller, 2001). However, just as people 5
create dirt paths in a park by veering from the sidewalk, information can flow outside
of mandated channels. There is then an endogenous feature to how information is’dis-
tributed® For exampleChang and Harrington (200@)low an upper level manager to 8
observe a new practice and then decide whether to communicate it to lower level agénts.

A second element to organizational structure is the allocation of authority—wo
makes the decisions—associated with which are two critical facets: modularity ahd
decentralization. An organization may have to perform many sub-tasks in solving a
problem and a key structural issue is how these sub-tasks are combined into distinct
modules which are then re-integrated to produce an organizational solution. Theltle-
gree to which a problem can be efficaciously modularized depends on the natur of
the task (what is referred to as decomposability, which we discuss later). Two cladsic
structures that represent alternative modular forms arétiferm—where all of the %’
sub-tasks associated with a particular product line are combined—arid-tbian—
where all similar sub-tasks are combined (for example, the marketing divisions for*all
product lines are in the same module). With this allocation of tasks, there is still e
issue of which agents ultimately make the decisions. In the context of a hierarch§*—
which describes most organizations—to what degree is authority centralized in higfier
levels? Is authority matched with who has the best information? Here we are referfihg
to formal authority which, as noted Bghion and Tirole (1997)may differ from real **
authority. If an agent with decision-making authority relies heavily on the informatién
provided by other agents then the real authority (or power) may lie with those providfﬁg
the information. The allocation of information and real authority are thus intertwined”

A third element of structure is the least well-defined: organizational norms and jl-
ture. Though there are probably as many definitions of culture as scholars who Have
sought to define it, we'll put forth the one &athe (1985)“Culture is a set of shared %0
assumptions regarding how the world works (beliefs) and what ideals are desirable Val-
ues).” Agent behavior is somehow influenced by an organization’s past and this paszt is
embodied in what is called norms or culture. Of particular interest is modelling the asso-
ciated feedback dynamic—norms, being determined by past behavior, influence cufrent
behavior which then serves to define future norms. This is a driving fordéairch
(1991)

The final element to organizations to be covered is agent motivation. Agents may
be modelled as having preferences—for example, they desire income and dislike exert-
ing effort—but how that translates into behavior depends on an organization’s |ncent|ve

18

41
42

8 This type of model is more fully explored Mriend (2005) 43



© 0 N o g »h W N P

A OB BB WOWWW W W WWWWN DN NDNNNDNDNDNDN R R P RP RBP PR R
W N PO © © N O 0o b WN P O © 0 N O g b WOWN PP O © 0 N o o b W N B O

Ch. 26: Agent-Based Models of Organizations 1283

scheme for rewarding and punishifi@he compensation scheme for corporate marn-
agers may drive them to seek higher organizational profit, while the scheme for division
managers may be tied to division profit (so as to induce high effort) which can then
create a conflict of interests. Conflict may also arise when an organization uses pro-
motion or bonuses based on relative performance to encourage'8ffartimportant 5
element to any conception of an organization is the degree of such conflicts and how
it varies within and across levels. By contrast, models of distributed problem solving
in Al assume agents have a coherence of goals. More realistic models of organizaions
recognize that conflict of interest is an endemic feature of actual organizations. o

An organization has an output—say, a set of practices—and delivers some mea8ure
of performance. Performance may be measured by profit (or some analogous critetion)
or may involve specifying a particular target (for example, the global optimum) aid
then measuring performance by the frequency with which an organization reachés it
or, if eventually it'll always reach it, the average time it takes to do so. While most
organizations are designed with a particular objective in mind (the objective of the &n-
trepreneur), it doesn't follow that organizational behavior is consistent with that or gy
other objective. An organization’s members may have different goals than those of'the
entrepreneur. Fortunately, an agent-based model needn’t answer the dicey questi&n of
“what is an organization’s utility function” as it is sufficient to instantiate agents and fét
organizational behavior emerge from the interaction of agents amongst themselvegand
with the environment. By building an organization from the ground-up, we can avéid

taking an anthropomorphic view to complex entities such as organizations. 22
23

2.3. Environments 2

25
An organization resides in an environment and is faced with a problem (or task) ghd
constraints to be faced in trying to solve it. The problem may be choosing a politi¢al
platform, if it is a political party, or producing and selling a product, if it is a firm?®
Problems vary in terms of their difficulty. A problem may be more difficult becausd

it requires more information. It may be more difficult because there are mteractléns
between various choice variables which makes it less likely that one can search, dirfien-
sion by dimension, for a multi-dimensional solution. Relatedly, it may be more d|ff|cuﬁ
because directed search is infeasible or ineffective. Knowing where to go from ones
current position to achieve higher performance can greatly ease search. Such d|rected
search may be infeasible because there is no metric on the solution space; there |s no
notion of two solutions being close. Even if there is a metric, the relationship between

38

39
9 Many computational agent-based models of organizations are not explicit about the form of the incenive
scheme but, if one makes standard assumptions about agents’ preferences, there is often an obvious |mpI|C|t
specification.
10 Though these forces haven't been modelled in the agent-based literature, there has been some cor‘h’puta-
tional work elsewhereHarrington, 1998, 1999 43
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performance and actions may not be well-behaved in that the components of the gra-
dient may quickly change sign and admit many optima. This means that hill-climbihg
algorithms can get stuck on lousy local optima and it isn’t clear where to look for better
onest! 4

Related to the issue of difficulty is the extent to which a problem is decomposable.
A problem is said to be decomposable if there exists a way in which to partitiors it
into sub-problems such that the concatenation of the solutions to the sub-problenis is
a solution to the original problem. Such problems are easier and quicker to solve as it
means solving a collection of simpler (lower dimensional) problems in parallel. Far-
thermore, how a problem decomposes suggests a “natural” organizational structure? an
issue explored ifEthiraj and Levinthal (2002) 1

An organization’s problem may also have a dynamic component to it. In solving2a
single task in real time, the best solution may evolve with changes in the environmént.
A less stable environment makes the problem more difficult as the organization is ptir-
suing a moving target. Or an organization may face a series of problems. Is the s&me
problem being faced repeatedly or are the problems distinct and, if so, how are titey
related? As long as the problems retain some similarity, the solution to one will provide
clues for another, thereby creating opportunities to learn. 18

A more distinctive feature of an organization’s environment is the presence of otker
entities that are also solving problems; there may be a pool of organizations coevolvihg.
Other organizations may influence an organization’s current performance—consid&r a
setting in which they competeéBarr and Saraceno, 20B2or influence future per- 22
formance when they can learn from each othdillér, 2001) or exchange personnel 23
(Axtell, 1999. There may be other adapting agents such as consun@rarg and 24
Harrington (2003gllow consumers to search at the same time that firms are adaptihg
their practices—or lobbyists (if the organizations are governments). In providing an &n-
dogenous source of change in an organization’s environment, coevolution can pro%¥ide
rich and non-trivial dynamics. 28

29

2.4. Implementation of an agent-based model of an organization 30

31
Having identified many of the components that go into an agent-based model of arfor-
ganization, how does one implement it computationally? As space constraints prevéat a
comprehensive answer, let us focus on two broad and essential elements to implefien-
tation: agent processes andsuper-agent processes. In a computational model, an agent®®
is instantiated as a mapping from inputs into outputs. Input includes information fréfn
outside the organization (from customers, input suppliers, competitors, etc.) and infor-
mation from inside the organization (subordinates, peers, superiors); it takes the f&rm

of processed information, new ideas, actions. The ensuing output may be a conéfete
40

41

11 page (1996provides a rigorous investigation into what it means for a problem to be more difficult frofff
the perspective of search algorithms. 43
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action or a message to other agents. The important point is that many of the elemenits of
an organization—communication network, hierarchy, incentive schemes, and the like—
are embedded in an agent’s mapping. When one writes a code that specifies that agent
i observes some data and makes a recommendation to/agérd, after also receiv- 4
ing a recommendation from agentchooses between these alternatives, one is making
assumptions about the allocation of informatioraQd j receive information from the
environment while: does not) and the allocation of authority fas authority while 7
and; do not). The particular form of this mapping similarly depends on organizatiorsal
features such as the form of compensation and norms (peer pressure, standard operating
practices, etc.) as well as agent-specific traits including preferences, beliefs, and sog-
nitive skills. This mapping may evolve over time due to learning but also because the
identity of an agent changes as a result of personnel turnover. In sum, an organization
is implicit in the modelling of agents’ mappings. What emerges from the interactign
among agents and the environment is organizational behavior. 14
Lying on top of these agent processes are super-agent processes which systemati-
cally influence an organization but are not embodied in agents’ mappings. Super-agent
processes are commonly used to endogenize organizational structure. This may miean
using a genetic algorithm defined over a population of organizations which creates mew
organizational designs and weeds out poorly performing oviéie(, 2001).12 Or one 19
might model the adaptation of organizational design through a hill-climbing algoritren
(Ethiraj and Levinthal, 2002r simulated annealingarley and Svoboda, 1996 hese 21
super-agent processes provide a black box mechanism to substitute for modellingzthe
agents who actually make these decisions. For example, a CEO typically decidegon
organizational structure, creditors decide whether to force an organization to exit, znd
entrepreneurs decide whether to create a new organization. As modelling all ager#s is
often too daunting a task, super-agent processes represent a parsimonious way in wgich

to encompass these other forces. 27
28

2.5. How does agent-based computational economics differ from neoclassical 29
€conomics? 30

31
The objective of this section is to summarize the essential differences between agent-
based computational economics (or ACE) and neoclassical economics (or NCE). Ieeso
doing, we will argue why economists ought to be interested in ACE. 34
The first essential difference is that agent behavior is characterizathptive search 35
in ACE, which departs from the assumption in NCE that agent behavior is optimal
(for some preferences and beliefs). In short, NCE describes “what is best,” while AQE
38

39
12 The role of selection is particularly interesting because part of what makes a collection of agents an “gjga-
nization” is that it is a unit of selection. Corporations are created and fail; governments are put in power and
overthrown. By comparison, general societies are more amorphous and thus less natural a unit of selection.
Indeed, conquerers can be assimilated in which case which society has really prevailed? While the same ight
be said of firms—consider hostile takeovers—it is not as compelling. 43



© 0 N oo g b~ W N P

A B BB WOWWW W W W W WWN DN NDNNNDNDNDNDN R R P RP RBP PR R R
W N P O © 0 N O 0o b WN PP O © © N O g b~ WOWN P O © 0 N o o b W N B O

1286 M.-H. Chang and J.E. Harrington, Jr.

describes “what is better.” With ACE, learning is based more on experience than un-
derstanding, more on retrospection rather than foresight. Furthermore, imperfections
to agent behavior are modelled very differently. With NCE, imperfections are duesto
incomplete information. Consistent with the bounded rationality approach, cognitive
limitations are central to ACE which means that what information is possessed maysnot
be fully processed. This distinction between optimal behavior and adaptive search tfas a
considerable impact on the logic of the model and the ensuing insight that is produced.
This will come out in Sectiol® when we examine a particular class of ACE models. 8
The next two distinctive elements of ACE emanate from the methods used in sohdng
the model. Results are proven with NCE, while they are numerically derived for a partic-
ular parameter specification with ACE. Computational implementation has implications
for both modelling and analysis. 12
The second essential difference is the way in which agents’ environments are mad-
elled. The forte of expert NCE modelers is constructing a well-behaved environment
in the sense of, for example, having a unique optimum or equilibrium and allowirg
comparative statics to be signed. In other words, building a plausible model that cambe
mentally solved. With ACE, there are much fewer constraints of this sort since the madel
is solved numerically. This allows faomplex environments which are richer with more 18
descriptive realism. Without as many modelling constraints, a researcher is more apt to
be able to make the primitive assumptions thought to be most appropriate and let thecen-
vironment be what it will be. Complexity is not shunned but rather embraced when itis
a property of the environment that actual agents and organizations face. In short, ACE
allows for richer environments than does the NCE approach and, furthermore, makes
complexity a trait of the environment whose role is to be explored. Indeed, research
reveals that qualitative results can vary significantly with environmental complexity. 25
The third essential difference is in the mode of analysis. Dynamic models in the NGE
tradition typically focus on the long-run, whether a steady-state or a stationary distribu-
tion. Behavior is characterized when all has settled—the environment has calmed d@wn
(in actuality or in expectation) and the system has converged to some form of equi-
librium. A primary virtue of the ACE approach is that, by running simulations, it cax
describamedium-run dynamics. By medium-run dynamics we mean that some learning
and adaptation has taken place but the system is not close to stabilizing. Not onlysare
medium-run dynamics important if one wants to understand the transitional impactsof
various policies but, if convergence to equilibrium is slow (or if there is convergencesat
all), it may be the time scale of greatest relevance. 35
These three identifying traits of ACE—adaptive search with cognitive constrairs,
complex environments, and medium-run dynamics—are quite complementary in that
a complex environment makes optimal behavior more problematic an assumption and,
furthermore, it is more appropriate to describe the system using medium-run dynarsics
rather than a long-run equilibrium. 40
In light of these unique features, economists should be interested in ACE because it
offers a new set of modelling and analytical tools which, in many instances, are quite
complementary to that of NCE. First, a computational agent-based approach can be4sed
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when the environment is inherently complex and poorly behaved (multiple optima, non-
guasi-concave, coevolution among agents, etc.) so that analytical methods are likely to
fail and the assumption of game-theoretic equilibrium is particularly problematic a8 a
characterization of behavior. Rather than making heroic assumptions on behavior‘and
the environment in order to ensure the model can be mentally solved, one can use ACE
methods. Second, ACE can characterize medium-run dynamics, a long neglectec ele-
ment of NCE in spite of its importance. Third, ACE methods can be used to expldre
not just traditional NCE issues—such as the role of organizational structure—but lso
previously ignored issues such as the role of environmental complexity and the <:9og-
nitive limitations of organizational members. Complexity may differ across econon%?c
settings because of the production process and the extent of complementarities among
an organization’s activities. For example, greater connectedness among agents due to
innovations in information technology may mean a better global optimum but alsq4a
more complex environment in terms of more local optima. Cognitive limitations may
differ across organizations because of education, training, and how effectively an ofga-
nization “selects” smarter people. Also, the extent to which cognitive skills matter wil
vary across positions within an organization; such skills are less important for tasks that
can be routinized and more important for those that are continually subject to novely.
These new tools and issues are capable of providing new insight into organizations, as
we'll show in this chapter. 21

22
Free your mind. [Morpheus to Neo frofiihe Matrix.] ”

A challenge to a neoclassical economist in reading this chapter will be the unortﬁo-
dox logic of these models. The optimization framework produces a certain logic WhIZCh
can be quite distinct from that due to adaptive search. The canonical ACE enwronment
is one in which an agent is searching on a landscape with multiple optima. Chang%—
such as with respect to organizational structure—may actually result in a lower glojal
optimum but nevertheless enhance performance because search may not always figd the
global optimum or medium-run dynamics may generally not be near the global opfi-
mum. For example, a change which throws the organization into the basin of attraction
for a better optimum can enhance performance even though it may be deleterious igsthe
short-run. The logic of these models rests not just on how the landscape is affected in
terms of its highest point but on a broader range of landscape properties which imgact
how search is conducted. With NCE, what matters are the set of optima or equilibsia;
with ACE, the entire landscape can matter because at issue is how likely adaptive search
can take an organization from one point of the space to another. The path mattersand
not just the destination. 39

40
.. a straight line may be the shortest distance between two points, but it is by ngy
means the most interesting. [The Doctor from “The Time Monster” episode ofs.

Doctor Who.] 43
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3. Search and learning 1
2

[T]he assumption that business behavior is ideally rational and prompt, and als®
that in principle it is the same with all firms, works tolerably well only within the 4
precincts of tried experience and familiar motive. It breaks down as soon as we
leave those precincts and allow the business community under study to be faced
by—not simply new situations, which also occur as soon as external factors un=
expectedly intrude—but by new possibilities of business action which are as yet
untried and about which the most complete command of routine teaches nothing.
[Joseph A. Schumpetdusiness Cycles: A Theoretical, Historical, and Statistical 10
Analysis of the Capitalist Process (1939), p. 98. 11

In this section, we take the perspective that a primary task of an organization |s to
constantly search for and adopt routines that improve (though do not necessarily maX|-
mize) performance. Thisearch-and-learn perspective of a firm, as an alternative to the
neoclassical approach, is central to the evolutionary theory of the firm where firms re

“modeled as simply having, at any given time, certain capabilities and decision rulles
[which are] modified as a result of both deliberate problem-solving efforts and random
events”(Nelson and Winter, 1982, p. A¥

As formulated by Schumpeter and Nelson and Winter, a firm is represented by a
single agent—an entrepreneur carrying out search and making performance- enhancmg
adoption decisions for the entire enterprise. The agent-based approach to modelling or-
ganizations takes this one step further. It recognizes that the bounded rationality on he
part of a single decision maker, faced with a large and complex routine space, makés an
organizational search strategy utilizing multiple agents compelling. The main objectzve
of this research program is understanding how a firm’s performance is |nfluencecf5by
the way in which parallel search is carried out among multiple agdérithis typically
takes the form of managers of various departments independently searching for bétter
routines. Furthermore, if we make the reasonable assumption that there is no singl%? in-
dividual who is instantaneously and costlessly informed of all new knowledge in tfie
organization, it then becomes crucial for effective organizational decision-making that
there be collocation of the uncovered information and the right to act on that infornia-
tion. This collocation may occur at the top, thereby requiring knowledge to be pullzgd
up the hierarchy, or at lower-level units, thereby requiring decision rights to be pusﬁ%d
down @ensen and Meckling, 1995

As Hayek (1945)stated so forcefully, the assumption of bounded rationality puts &n

upper limit on the effectiveness with which the central authority can process and act’on
37

38
13 One of the earliest computational papers on organizational searefiigthal and March (1981) 39
14 Burton and Obel (1980} one of the pioneering efforts in using a computational model to understang
the effect of organizational form. The authors comparefthéorm andU-form as a function of the degree
of decomposability in production technology; see SecBdtfor definitions of these structural forms. Their
model anticipated many of the crucial elements of organizational modeling considered in more recent péﬁers
reviewed in this chapter. 43
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the large set of information sent up by an organization’s lower levels. Pushing against
this limit are two beneficial roles that the centralized authority structure may playzin
formal organizations. First, it can act as a conduitkioowledge transfer. Depending 3
on the circumstances surrounding the local units, a piece of information uncovered by
one may prove to be of value to other units. The global exploitation of a local discovéry
realizes an immediate static gain—as a useful routine is shared—but, as we will later
explain, there may also be dynamic implications in that mutual learning can influerice
what units adopt in the future. While an informal social learning mechanism may %e
capable of facilitating these static and dynamic processes, upper level managemerft can
have an important role to play in this regard. Second, centralization can help dispaiate
units to work together by providingpordination. To the extent that an action taken by*!
one unit may interact with the productivity of various actions of other units, superior é#-
ganizational performance may require upper management to intervene and constraili the
choices made by these units. Our discussion will focus on how various orgamzatldf‘\al
forms influence these aspects of multi-unit search.

This section is organized as follows. Sect®ri begins with a description of how *
an organization’s search space is modelled. There are two general approachis: tHé
model (which is imported from biology) and thesonomic model (which is built upon *®
economic primitives). We then briefly discuss the cognitive requirements for a search
unit exploring such landscapes as well as their implications for multi-agent search.
The relevant literature is then divided into two broad classes. One class has aff'of
the units of an organization engaged in similar operations and striving to solve simiar
(though perhaps not identical) problems. This is covered in Se8trExamples in-
clude retail chains and multi-plant manufacturers. The second class, which is revieved
in Section3.3, has the organizational problem segmented into distinct and dISSImIng’
sub-problems which are distributed among the units who separately engage in sea7rch.
The typical U-form organization is an example. The evolution of organizational d%;
signs is covered in Sectid®4. Finally, SectiorB.5distills some of the new insight and »o

contrasts it with what a neoclassical economic approach delivers. 0

31
3.1. Modelling search 32

33
Two approaches have been taken in modelling the search space faced by an organiza-
tion. One approach is to assume the space of routines, over which an organizatias is
searching, is a highly structured space; typically, it is a subset of Euclidean space with a
metric that allows one to measure how “close” two routines are. Given this search space,
a mapping from it to the real line is constructed which assigns performance to each seu-
tine. How this mapping is constructed varies significantly betweemMkenodel and 39
the economic model. A second approach involves less structure as its primitive is a
probability distribution over the performance (say, profit) attached to an idea. Exam-
ples utilizing this approach aidarch (1991)andChang and Harrington (1997As the 42
dominant approach is the first one, we will focus exclusively on it with the exceptieh
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of discussingvlarch (1991)n Section5.2due to its unique analysis of the evolution oft
organizational norms. 2

Agent-based models of organizational search characterize an organization by a fixed
number of attributes. The search space for an organizational unit, frequently cadled
a landscape, is defined on Euclidean space in which each attribute of an organiza-
tion is represented by a dimension of the space and a final dimension indicates the
performance of the organization. The organization’s attributes are indexed by the”set
S ={1,2,..., N}. For each attribute, there exists a fixed number of possible optiohs
which we will refer to as “practices” and whidkelson and Winter (198all “rou- ¢
tines.” The practice of the organization in attribyte= S takes values in a non-empty 10
setZ; € %, wheredi is the set of all real numbers. Lettilg= Zy x - - - x Zy, avector 11
defined inA then completely describes the organization’s practices. There is a metfic
d:A x A — % which measures how “close” practices are to one another. Finally, o
each vector of practices, there corresponds a level of performance for the organization
as described by : A — R. The search spaces in thiK model and the economic 15
model, to be discussed below, are two special cases of this general model. 16

A key factor in the organization’s search process is the exact shape of the landscdpe.
Figure 1shows two possible search landscapes for an organization which has twdéat-
tributes with 15 possible practices for eaéhigure Ja captures a smooth landscapé€?®
having a unique local (and thereby global) optimum, whilgure b captures a rugged 20
landscape with many local optima. The shape of the landscape is typically determiied
by the way the organization’s various attributes interact with one another. How thezh-
teraction pattern affects the extent of ruggedness is discussed below for bdtK the3
model and the economic model. 24

25

3.1.1. NK model 26
27
Even though th&lK model was initially conceived bigauffman (1993¥or understand- 28
ing biological systems, it has been extensively applied in many other domains includihg
computational organization theory. An organization is conceptualized as a system of%c-
tivities. It makes decisions concerningactivities where each activity can take on two®
states, 0 or 1, so that, referring back to the general modet, {0, 1}V. A particular 32
configuration of activity is then described by a binary vector of lengtiThe distance
between two such vectorg,= (x1, ..., xy) andy = (y1, ..., yn), is captured by the 3*

Hamming distance: 35
36

N 37

d(x,y) = |xi —yl; 1) &

i=1 39

that is, the number of dimensions for which the vectors differ. As part olienodel, 40

the mappingv from the activity vector to the level of performance is a primitivas 41
set to depend on the performance contributions that these activities make individuedly,
where the contribution of each activity depends on the interactions among a subset of
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32
(b) Rugged landscape zz
Figure 1. Search landscapes. 35
36

37
activities. The degree of interdependence among activities is captured by a parameter
K which is the number of other activities that directly affect the contribution of a given
activity. In its original formulation, thesg activities are randomly selected fragrfor 40
each activity. 41

To be more concrete, let(x;, xl.l, e xl.K ) denote the contribution of activityto the 42
organization’s performance where its dependence on activity and thek activities 43
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to which it is coupled(x}, ..., xX), is made explicit. It is common to assume that the
value attached to; is randomly drawn from [01] according to a uniform distribution 2
for each possible vectqrxi,xl.l, R xiK). The overall organizational performance is3
then 4
5
1\ & 6

1 K
vQ)Z(ﬁ)Z“!’("i’xiw-wX:‘ )- @
i=1 8
Normalization byN enables performance comparisons whéis changed. N

The interaction parametek,, controls the difficulty of the search problem by making,
the value contribution of an activity dependent ugorother activities. Wherk = 0, ;
the activities are completely independent so that changing the state of one activity dges
not affect the performance contribution of the remainvg- 1 activities. The land- 43
scape is then single-peaked so the globally optimal vector of activities is also the unigue
local optimum. That is, improving; by changingy; must raise the organization’s per- 5
formance since the contribution of the other activities is unaffected, bfhe other ¢
extreme is wherKk = N — 1 so that a change in the state of an activity changes the
performance contributions @fl other activities. This typically results in numerous lo-15
cal optima forv(-) due to the complementarity among activities. That is, changing apy
one of a collection of activities could lowerbut simultaneously changing all activities 5
could raisev. Kauffman (1993shows that the number of local optima increasekin  »;

Rather than specify the coupled or interacting activities to be randomly selected,
many organizational models using thiK framework choose the interaction patterrps
S0 as to explore how different architectures influence performance. For those purpaeses,
it is convenient to capture the interdependencies iadjacency matrix (Ghemawat and 25
Levinthal, 2000. Figure 2shows four such matrices fof = 6 in which the degree of 2
interdependence as well as the exact structure of the interdependence differ. If theyper-
formance contribution of thgth activity (row j) is affected by the chosen activity in 2
the ith activity (columni) then the element in the matrix corresponding to roand 29
columni has an ‘x’. This is always true of the principal diagonal as the contributica
of an activity depends upon the practice chosen for that actiture 2 is an adja- a1
cency matrix for an organization in whicki = 0 so that the activities are completelys:
independentFigure D is whenK = 5 and each activity is influenced by every othegs
activity in S. Figure 2 captures a special case Kf= 2, where the interdependenciesss
are restricted to non-overlapping strict subsets;ahe activities in{1, 2, 3} influence 35
one another, while those if#, 5, 6} influence one anotheFigure 2 is another case ss
of K = 2, though there is no obvious systematic structure in comparison to the otfrer
matrices. This is what would be typical if the interactions were random. 38

39
3.1.2. Economic model 40

41
The essence of theK model is to build a generic landscape through a random co#-
struction process. In contrast, the economic model builds it systematically from a4get
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and Harrington (2000)Consider an organization—such as a retail chain—that consists
of a corporate headquartetd@) andM > 2 units (such as stores). In this section, wé®

will focus on constructing the landscape for only one of the stores and defer the dis€us-
sion of the overall organizational search problem. As inNikemodel, there exisiv
activities to a store’s operation. For each activity thereRgossible practices so that 26
A = {1,..., R}V. A store is then characterized by a vectordfoperating practices 27

(z1,...,2N) € A, wherez; € {1, ..., R} is the store’s practice for thieh dimension. ”
These practices influence the appeal of the store to consumers. The distance betéloveen

any two vectors of practices,andy, is measured by Euclidean distance:

N
dx,y) =

i=1

D i =y

3)

25

31
32
33
34
35

. . _ 36
Each consumer has an ideal vector of store practices which is an elemenf_of

{1,..., R}V. The net surplus to a consumer of type= (w1, wy, ..

ing ¢ units at a price ofp from the unit is specified to be

., wy) from buy-

38
39
40
41
42
43



© 0 N oo g b~ W N P

A B BB WOWWW W W W W WWN DN NDNNNDNDNDNDN R R P RP RBP PR R R
W N P O © 0 N O 0o b WN PP O © © N O g b~ WOWN P O © 0 N o o b W N B O

1294 M.-H. Chang and J.E. Harrington, Jr.

Itis assumed that € (0, 1), y > 1, andl’ — ,/vazl(zi —w;)? > 1. Havingg takeits *

utility-maximizing value, a consumer’s demand is z

3

. N 5 4

B/P)TF|T = | > (zi — wi)? 5

i=1 6

The set of consumers in a market is represented by & cliffined on the space of con-7
sumertypesil, ..., R}V, and is allowed to vary across markets so that the environmént

a store faces varies across storesChang and Harrington (200(dditional structure °

is placed uporF as a consumer’s type isassumed to ligih ..., 1),...,(R,...,R)}

so that it can be represented by a scalar. This captures the idea that a consumer’s prefer-
ences over the various dimensions are correlated so that, for example, a consumefivho
prefers value 3 for dimension 1 is likely to prefer value 3 for the other dimensions. THe
set of consumers in the market is represented by a triangular density function defiied

on{l,...,R}.1® 15
Using the derived demand for a consumer and specifying the optimal prigggps 16
store’s profit is: 17

18
Y
1—

B
dF(w). 4) 2

o [(5)-1()" [~ [Fe-w]

The crucial property here is that a store’s profit is decreasing in the distance between its
practices and those desired by its customers. For a given store, the profit functiorede-
fined above then represents its performance landscape over which it searches for better
combinations of practices. As in titNK model, an important property of the landscapes
structure is its ruggedness. Here, the number of local optima can be shown to increase
in ¥, the consumers’ sensitivity to store practices, as well as the degree of preference
complementarity Chang and Harrington, 20D4Unlike the NK model, for which the 28
level of complexity is directly specified by the interaction paramétethe economic 29
model allows the complexity in a decision problem to result from more fundamental
economic primitives. 31

32
3.1.3. Modelling search by a single agent 33

34
The potential for multi-agent search to outperform single-agent search on a per-agent
basis derives from its capacity to overcome the bounded rationality of individual agesats
through sharing and coordination in the search process. Two forms of bounded rational-
ity stand out in these models: a lack of information about the search space (landscagpe),
and a constraint on the considered set of alternatives to the status quo. 39

40

. . L 41
15 Chang and Harrington (2004¢lax the assumption of a perfect correlation in a consumer’s preferences
over dimensions and examine how the degree of preference complementarity affects the relationship befifeen
an organization’s structure and its performance. 43
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If a unit has full information about the mapping from practices to performance then
search is irrelevant as the organization can simply identify and adopt the practice vec-
tor that corresponds to the global peak. Almost all agent-based models instead take
the view that agents are largely uninformed and assume the other extreme—nothing is
known about the shape of the landscape—so that agents must resort to blind searchasing
some form of hill-climbing algorithm. The myopic but adaptive search on the landscape
entails considering a practice vector that is different in several dimensions from the7or-
ganization’s current one—the change may involve as few as one and as many & all
dimensions. 9

This forces us to confront the second form of bounded rationality. To what extentds
the organization capable of considering different changes? Is it capable of contempiat-
ing a major change in its operation which involves changing practices in all dimensiofs?
Or, is it constrained to considering only minor modifications? The ruggedness of the
landscape—which is determined &yin the NK model and partially determined by 14
in the economic model—turns out to affect the efficacy of search. When the landscape
is smooth and single-peaked, constraining the breadth of change that an organization
considers has no impact on the optimum eventually attained—as any hill-climbing algo-
rithm will find the global optimum—though it will influence the speed of convergence
and thus intermediate-run performance. This form of bounded rationality does mzke
a difference, however, when the landscape is rugged. While an organization capable
of carrying out transformations involving all dimensions will still eventually attain tha
global optimumt® an organization which is only capable of considering changes involsz
ing a small subset of the dimensions may become trapped on an inferior local optim&m.

Central to the search-and-learn perspective of organizational theory is this dynahic
interaction between a boundedly rational search unit and the structure of its search
space, which serves to restrict the set of search paths and outcomes that the unit ¥ ca-
pable of achieving. The organization as a multi-agent search mechanism can overééme
such restrictions through the sharing of their discoveries and internal coordifation. 28

29

3.2. Organizational search with units solving similar problems 30
31

Examples of organizations in which various units are solving similar problems include
retail chains, multi-plant manufacturers, and manufacturers producing a line of rel&fed
products. Such a situation is modelled by endowing each unit with a performance lead-
scape over which it searches. All of the landscapes are defined over the same space
36
37
16 1t should be noted, however, that it may take a very long time for the organization to find such a gldial
optimum by chance wheN is relatively large. 39
17 Both Levinthal (1997)andRivkin (2000)consider the impact of this interaction on the Darwinian selectior,
process in a population of firms climbing &K landscapelevinthal (1997)examines how successful firms
with tightly coupled systems (higk() find adaptation difficult in the face of environmental change, while
Rivkin (2000)allows imitation among firms and focuses on how tight coupling protects a successful firm fréfn
potential imitators. It should be noted that both papers are restricted to single-agent models of an organizésion.
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of activities and similarity between units’ problems is reflected in the similarity of the
landscape, that is, how activities map into performance. Given that units are searching
over similar landscapes, the possibility of knowledge transfer among units is significant.
The main organizational issue here is how inter-unit learning can be promoted throtigh
an appropriate organizational structure. 5

6

3.2.1. Kollman et al. 2000 7
8

Recognizing the possibility of multiple searches as the central benefit from decentraliza-
tion, Kollman et al. (2000)hereafter KMP, consider four factors affecting the magnitude
of this benefit: (1) difficulty of the problem; (2) sophistication in search; (3) heterogene-
ity among unit preferences; and (4) organizational size. Extendinblkhenodel into 12
the multi-unit organizational setting, KMP endow each unit withNkh search space 13
which is common for all units (including the central authorit§) Search involves my- 14
opic hill-climbing on a fixed landscape. The objective is to investigate the efficacy ofsa
multi-unit organization in searching for solutions in parallel by exploiting units’ search
capacities and combining the revealed information to the benefit of the entire organiza-
tion. 18

Four types of organizational forms (or search rules) are considered: (1) full central-
ization in which search is carried out solely by the central authority and the best pokcy
found is mandated for all units—hence, this is equivalent to single agent search; (2)2ull
decentralization in which each unit searches independently and makes its own adoption
decision (so that there is no inter-unit spillovers of knowledge); (3) partial decentral-
ization with “best adoption” which means that each unit searches on its own but, after
a fixed number of search periods, the central authority mandates the best policy2dis-
covered; and (4) partial decentralization with “incremental adoption” which means tkeat
each unit searches on its own for a given length of time and then the central autharity
forces the units to change policies incrementally (attribute by attribute) toward the brest
known current policy so that, ultimately, all units have the same péfidihe potential 29
trade-off between centralization and decentralization is that the former may draw from
a better distribution while the latter has multiple units searching. Under each of these
organizational rules, KMP examines the impact on the organization’s performancezof
the four previously mentioned factors. 33

A focus of their analysis is to understand the relationship between the complexity
of the environment—measured k& in the NK formulation—and the cognitive con- 35

straints of the organization’s units which are represented by the maximum numbessof
37
38
18 The central authority in this setting is just another unit carrying out the search for the organization, thoygh
it may have superior search capability.
19 |n this case, the target policy—that is, the “best-to-date” policy—could change along the adoption proc4ess
since the organization-wide switching of unit policies takes place one attribute at a time. This is to be con-
trasted to the “best adoption” rule under which all units immediately adopt the best policy in its entirety, wifte
discarding everything that they have found individually through local search. 43
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dimensions, denoteg along which a new idea can depart from the status quo policy.
To begin, the benefits from decentralization are always positive under the best adoption
rule when the units are as capable as the central authority. There is also an interagtion
between problem difficulty and the benefits of decentralized search because the gfeat-
est advantage occurs with a moderate level of difficulty. Even a single unit can do very
well when problems are simple, so having more units searching in this case is of litle
value. When problems are very hard, each unit tends to get stuck on a local optimum
of similar value (as the peaks become more numerous with more similar valués as
increases) so once again organizational structure doesn’t matter. It is when the prob-
lem is of moderate difficulty that the additional search under decentralization makes a
substantive difference. 11

In comparing the two partial decentralization rules, KMP find that the incremental
adoption rule always outperforms the best adoption rule. This is due to the fact that
the units are allowed to keep in place what has worked for them, while simultaneously
allowed to try what has worked elsewhere in the organization. This blending of diverse
local solutions proves superior to the alternative of requiring all but one unit to discagd
the knowledge they accumulated. This comparative advantage of incremental adoption
is found to be non-monotonic in the difficulty of the problem. Whinis low, the 18
probability of any one unit finding the global optimum is relatively high and, therefore,
the advantage of incremental adoption is minimal. And, wkidn high, there are many 20
local optima which tend to be uncorrelated so that blending them together has little value
and, like any random change, generally proves deleterious. In other words, the activities
identified as worthwhile by one unit (that is, are at or close to a local optimum) aee
unlikely to be of much value to another unit that is targeting a different optimum becaese
these different optima could be vastly distant from one another. Once again, it is2for
moderately difficult problems that incremental adoption does significantly better thran
best adoption. Finding the global optimum is then not easy, and information associated
with one local optimum is still of value to units that are at another local optimum a4t
may allow them to move to yet better local optima. 29

30

3.2.2. Chang and Harrington (2000) 31
32

The focus of this work is to explore the relationship between organizational structures—
specifically, the degree of centralization—and firm performance. The case of a single
chain with multiple local stores is analyzed@mang and Harrington (2000Jhe model 35
is then extended i€hang and Harrington (2003 allow for competing chains and 36
searching consumers, thereby enabling an investigation of the coevolutionary dynaiics
among organizations, units within an organization, and consumers in heterogenedus
markets. 39

Chang and Harrington (200@pnsider a retail chain consisting 8f stores, each 40
with a performance (profit) landscape defined by equgddnThe heterogeneity in the 41
markets that the stores serve is captured by differences in the distributions of consumer
types. Organizational profit is the simple sum of its stores’ profits. While stores’ lard-
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scapes may be similar, they are independent in that a choice made by one store does not
affect the profit earned by another store. However, as explained below, inter-unit learn-
ing creates a dynamic and endogenous linkage among stores’ search paths and prafits.

Search over the profit landscape takes place through an iteration of myopic one-step
hill-climbing, where a new idea is represented as a point in store practice space. In each
period, each store possesses a vector of current practices and generates one ideaswhere
an idea is created by randomly selecting a dimension fram. ., N} and assigningto 7
it a randomly selected element frofhy . . ., R}. If it is adopted then the store’s practices
in the specified dimension is changed to the new value. 9

Two organizational forms are considered in this setting. In the decentralized organi-
zation, a store manager evaluates his own idea and the ideas adopted by other stores
in the current period. A store manager sequentially evaluates these ideas and adopts an
idea if it raisesstore profit. Hence, each store manager searches over his store’s lard-
scape and has the authority to implement any useful ideas. This is equivalent to KMP’'s
full decentralization, except that inter-unit learning is voluntary. In a centralized orgarsi-
zation, a store manager once again generates an idea and considers whether, if adopted,
it would raise store profit. If so, the idea is passedH@. If not, the idea is discarded. 17
With this set of ideasHQ sequentially evaluates them in a myopic manner, mandating
a practice throughout the chain if doing so raiclesin profit, and otherwise discarding 10
the idea. Thus, uniformity of practices is a feature of centralization in this mbidgl. 20
then searches over its landscape which is based on chain profit, and it alone hasgtthe
authority to implement ideas. 22

Measuring performance by average chain profit, the main insight of this studysis
that centralization can outperform decentralization. This occurs when markets are suf-
ficiently similar, the horizon is sufficiently short, and consumer preferences are suffi-
ciently sensitive to store practices relative to price. Given that markets are heterage-
neous, the benefit of decentralization is clear—it allows each store manager to tafor
practices to its market. So, how can a centralized structure generate higher profit® It
turns out there is an implicit cost to decentralization. By adjusting practices to ona’s
own consumers in a decentralized chain, stores’ practices tend to drift apart. As a result,
a new practice adopted by one store is increasingly unlikely to be compatible with the
current practices of other stores. In essence, stores come to target distinct consumess (by
targeting distinct local optima) and what works for one type of consumer doesn’t tend%o
work for another type of consumer in light of preference complementarities. Inter-stere
learning is then less under decentralization and this is detrimental to the rate of impreve-
ment in store practices. The virtue of a centralized structure is that it enhances inter-store
learning by keeping stores close in store practice space so that they are targeting signilar
consumers. With these two countervailing effects, a centralized structure outperforn®s as
long as markets are not too different. The value to enhanced inter-unit learning is great-
est when stores are farther from local optima and for this reason centralization does
particularly well in the short-run. In the long-run, decentralization is typically superier
because the uniformity of practices under centralization prevents the global optimam
being achieved since the global optimum has different practices in different markets.
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Finally, centralization also outperforms when consumers are sufficiently sensitive to
store practicesy is high). This result is related to the property that the ruggedness2of
the landscape increasesjin As the number of local optima rises, stores in different
markets (and thereby different landscapes) are more likely to share some common focal
optima. This enhances opportunities for inter-store learning and the analysis showssthat
this is best exploited by a centralized organizaf®n. 6
A changing environment is encompassed by allowing the population of consumer

types to shift probabilistically. Measuring performance by steady-state chain profit, cen-
tralization is more likely to outperform when market fluctuations are sufficiently large.
Recall the earlier result in the static environment that centralization is favored in the
short run because stores are farther away from local optima, in which case inter-store
learning is especially valuable. As increased fluctuations in market environments shake
the landscapes more vigorously, they act to push stores further away from local optima.
Thus, a constantly fluctuating environment requires the firm to perpetually learn at a
high rate, which then sets the stage for the short-term superiority of centralizationsto
become a long-term advantage. Quite contrary to the received wisdom that volatikty
in markets require greater decentralizati@mang and Harrington (200@ipd it is the 17
centralized organization that is more effective in responding to change. 18

19
3.2.3. Chang and Harrington (2003) 20

21
A more challenging issue is to consider how market structure interacts with orga-
nizational structure to influence the dynamic performance of chains. Does increased
competition make centralization more or less desirable? To address thisGfarey 24
and Harrington (2003jnodify the previous model by allowing for competition and:s
consumer search. There akechains and¥ markets with each chain having a storess
in each market. Within each market, there is a fixed population of consumers thaten-
gage in search by moving among stores. At any point in time, a consumer in a gigen
market (served by. stores) has a favorite store and buys from it with probability@. 20
With probability O the consumer experiments by randomly selecting another store and
buying from it. If the resulting surplus for the consumer is higher than what the can-
sumer received most recently from the favorite store then this new store becomes:he
consumer’s favorite store. If not, then the consumer’s favorite store remains unchanged
and, in the next period, the process is repeat@degulates the extent of experimen-zs
tation. If @ = O then there is no competition as consumers are permanently loyal,
while Q = (L — 1)/L implies no loyalty. The organizational structures are as beforg.
A store evaluates the profit attached to adopting a new idea using its current base of
consumers—those that are currently buying from it. In a centralized organizBi@n, ss
evaluates ideas using a measure of profit based on the current sets of consumersat its
stores. 40

41

20 The robustness of these results with respect to the shape of the landscape is expBivedgrand Har- 42

rington (2004) 43
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A key result is that centralization is more attractive when there is a larger num-
ber of competing chains and may even outperform in the long-run. The basis for this
finding is an implicit increasing returns mechanism when competing organizationsare
coevolving with consumers. To understand this result, recall that centralization dees
particularly well in the short-run. Thus, early on a centralized chain is developing bet-
ter practices and thereby attracting more customers than a decentralized chain. Ia the
one-chain model, decentralization would eventually outperform, but that needn’t be true
when consumers are searching. This early advantage from centralization establiskhes a
customer base which tends to include the most prevalent consumer types in the mar-
ket, and it is this customer base which is used to evaluate the profitability of new ideas.
A centralized organization then tends to adopt practices well-suited for the prevalent
consumer types, which results in their retention and the attraction of more of those
types and which makes the chain even more inclined to adopt ideas suiting their pref-
erences, and so forth. In this way, an early advantage of centralization—coming frem
enhanced inter-store learning—is fed into a feedback loop to maintain an advantage in
the long run. As a result, a decentralized chain may not be able to catch up because
it is adopting ideas for a less prevalent niche of consumers. In other words, the rate at
which a chain climbs a landscape (by coming up with better practices for its current
customers) influences the shape of its future landscape (by affecting the set of layal
customers). A centralized chain climbs its landscape faster and this results in its future
landscape being more attractive. Coevolutionary dynamics among firms and consumers
produce a powerful increasing returns mecharfi$m. 22

23
3.3. Organizational search with units solving different problems 24

25
The previous section is applicable when the organization is divided into units solviag
similar problems such as selling a particular product line to consumers (retail chains)
or producing a particular product line (multi-plant manufacturers). Such organizatiens
are examples of tha/-form, but let us now consider th€-form organization. The 29
organization’s various activities are allocated among functional departments suchoas
Accounting, Finance, Sales, Purchasing, Production, and so on. A new practice adepted
in Sales is unlikely to be applicable to the operation carried out in Finance—they are
engaged in entirely different types of operations and thereby solving quite distinct prab-
lems. However, itwill have an impact on the effectiveness of the overall operation ef
Finance when the value of certain financial practices depends on sales practices; that is,
there is a complementarity between them. These organizational issues can be modelled
by specifying the firm as a system of activities in the context of thalK model but 37
with the feature that thes¥ activities are allocated to various departments for speciaks
ized search occurring in parallel. For instance, half of the activities may be put ungler

40
21 As an example of how analytical and computational methods are complementary, this issue is expr(l)lred

analytically inHarrington and Chang (200%is they consider a highly stripped-down versiorCbiang and 42
Harrington (2003) 43
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the control of departmemt while the remaining activities may be under the control

of departmeni3, with each department attempting to find the optimal configuration &f
decisions over the activities it controls according to some evaluation criterion. As ¢he
departments are then searching over distinct non-overlapping set of activities, thefe is
no prospect for inter-unit learning. Rather, the issue is how to structure the organtza-
tion so that the gains of parallel search can be had while balancing it with the neefl to

coordinate search in light of how these activities interact. 7
8

3.3.1. Rivkin and Sggelkow (2003) \
11

A long line of scholars studying complex organizations have observed that thereiare
many interdependencies among elements of design such as allocation of decisions3 in-
centives, and information flow&ivkin and Siggelkow (2003pffer as one source of 14
such interdependencies two conflicting needs of a multi-unit organization that are één-
tral to the search-and-learn perspective. First, to be successful, an organization Hust
search broadly for good actions (exploration). Second, it must also stabilize arotind
good actions once discovered (exploitation). An effective organization balances se#rch
and stability. The authors focus on three prominent elements of organizational design
in exploring how they interact to influence this delicate balance: (1) a central authoffty
that may choose to review the proposals sent up from subordinates; (2) an incefitive
system that influences the degree to which managers act parochially for the good of
their departments or for the good of the overall firm; and (3) the decomposition of gm
organization’s decisions into distinct departments. Their focus is on how these de5|gn
elements interact with one another to determine organizational performance through ’the
balancing of search and stability and how that relationship depends on the interde en-
dent structure of activities as dictated by the problem and on the limits on the cogniuve
ability of managers.

Their simulation considers a hierarchy with a CEO and two subordinate manag%rs
A and B. The firm engages in multi-agent search which takes place on performajce
landscapes generated by tHiK model. An organization ha& = 6 decision attributes ,,
and part of its design is how they are allocated among the two managers. Managgy A
has responsibility for a subséty of these attributes and manager B for the compley,
mentary subsefp. In each period, each subordinate manager reconsiders the actigns
assigned to its attributes by comparing the current configuration to some fixed numper
« of alternatives, so that reflects the cognitive capacity of a subordinate manage.
Theseq alternatives are ranked by a manager on the basis of an evaluation critesion
which is a weighted average of the performance of his department and of the other
department. 40

Initially, it is supposed thaty = {1, 2, 3} andSp = {4, 5, 6}. Denoting bys € [0,1] 4
the degree to which Manager A cares about the other department’s performance42the
evaluation criterion for Managers A and B, respectively, are 43
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oA v1 + v2 + v3 + 8(v4 + vs + v6)
= 5 i
UB_8(v1+v2+v3)+v4+v5+ve
= 5 ,

where recall thav; is the contribution of théth activity to total organization perfor-
mance. If§ = 0, a manager only cares about his own department, while=f 1 he
cares about firm profits then controls the degree to which managers’ incentives are
aligned with those of the organization. .

Finally, the form of vertical hierarchy and the ability of the CEO affect the organizzlio-
tional search process. From the status quo and #ifternatives, a manager sends up the,
bestP proposals to the CEO where “best” is according to the manager’s preferenggs.
There are two types of CEO's: rubberstamping (decentralization) and active (central-
ization). The first type always approves all proposals sent up by both managers so that,
effectively, an organization with a rubberstamping CEO is decentralized since the real
authority lies with the department managers. The active CEO, on the other hand, sejgcts
B proposals from all combinations of the submitted proposals and implements the gne
that generates the highest firm profit e= 1 for the active CEO). Thugj captures
the cognitive capacity of the CEO. Since an active CEO has the final authority, we wjll
refer to this as theentralized organization. 20

In sum, there are five different factors that affect the organizational search procgss
and, consequently, performance: the grouping of activities into departments, the amgunt
of information sent up to senior managemen),(the allocation of authority (cen- ,,
tralization/active CEO vs. decentralization/rubberstamping CEO), the extent to whigh
managers care about firm as opposed to department perfornddnaed the cognitive 5
abilities of the department managesd &nd the CEO). 26

There is found to be a significant interaction between the allocation of authority gnd
the complexity of the environment (as measuredky When the complexity is low g
(K = 0), the benefit of centralization is non-existent since the lack of interdependen-
cies means there is no need for coordination while, at the same time, there is a gost
due to slower adaptation. In such a case, short-run performance is lower under central-
ization. When complexity is moderate, centralizing authority in the CEO is shownsto
enhance performance as the interdependence among activities makes coordinationscrit-
ical. But then for highly complex environments (high), it is better to push authority s4
back down to the managers. Centralization suffers from the problem that an active GEO
is always moving the organization to points of higher firm profit and, wkies high, 36
there are many bad local optima. As a result, the organization is typically getting steck
at a point of low performance. In essence, centralization results in excessive stabity.
In contrast, a decentralized organization—by giving authority to department managers
who care more about their own department’s profit—may periodically result in orga-
nizational performance deteriorating which, when it causes movement into a basiat of
attraction for a better optimum, can enhance long-run performance. This weaknesg to
centralization can not be mitigated by increasing the skill of the CEO (as measured3by

N o g WN P
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B), but only by increasing the information flow,. In sum, centralization is undesirablet
when interactions are pervasive and the CEO gets little information from below. 2

The skills and incentives of the subordinate managers have some subtle and surpris-
ing effects. In a complex environment, highly skilled managers can be harmful in a
decentralized organization. By considering alternatives that are far away from their eur-
rent position, a highly skilled manager may undermine the improvement efforts of other
managers. The organization can suffer from excessive instability as it dances argund
the landscape without making much progress. Centralizing authority in the CEO pro-
vides useful coordination. An active CEO and skilled department managers are then
complements, not substitutes. Managerial incentives that are more closely aligned with
the interests of the firm are complementary to centralization as well. When managers
are parochial (lows), many of their suggestions are turned down in a centralized oe
ganization because the CEO uses a different criterion in evaluating them. Hencej3he
organization doesn’t make much progress. This is contrary to the usual argument which
is that, if managers have the right incentives, why does one need an active CEO? Here,
the problem is that departmental managers have partial information and control and:ene
needs the coordination that centralization delivers. 17

The above results are obtained for landscapes created using the usual random iater-
actionNK model.Rivkin and Siggelkow (20033lso considers the interdependence bewe
tween decomposition and the allocation of authority. With decomposable interaction®—
as represented by the block-diagonal adjacency matidxgare Z—centralizing au- 21
thority is irrelevant since department managers are solving independent problems.
There is no need for coordination. Superior performance can, however, come feem
the combination of imperfect decomposition—there is some interdependence across
departments—and an active, well-informed CEO. For instance, given a block-diagenal
matrix (Figure Z), performance is higher when an active CEO is combined wita
(Sa,S) = ({1, 2,6}, {3,4,5}) than with(S4, Sp) = ({1,2, 3}, {4,5,6}). At work 27
is the balancing of search and stability. Some overlap expands the range of seareh as
each manager proposes options that change the landscape faced by another deparment.
This may serve to move the organization to a different basin and, in some cases, result
in it homing in on a superior local optimum. 31

32

3.3.2. Sggelkow and Levinthal (2003) 33

34
Using a model similar to the preceding orsggelkow and Levinthal (2003xamine 35
the division of task and specialized search under three different organizational forss:
centralization, decentralization, and reintegration. In the centralized firm, decisions3are
made only at the level of the firm as a whole, whereas a decentralized organizaticn is
disaggregated into a number of departments in which decisions are made independently.
A reintegrated organization initially has a decentralized structure and then switche® to
centralization after a fixed number of periods (typically, 25 periods). A key variable
is the degree and pattern of interactions among various activities as specified byzan
adjacency matrix. The decision problem for the organization is decomposable if 4he
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activities can be grouped so that all interactions are contained within each group and
thus there are no cross-group interdependencies. The block-diagonal adjacency matrix
in Figure Z is a decomposable system. On the other hand, the decision problem is ron-
decomposable if there is no way to group the activities so as to eliminate all cross-group
interdependencies; see, for example, the matrkigure 2. 5
The simulation entails creating 10 000 landscapes usindlkhenodel withN = 6. 6
The three organizational forms are compared in terms of their performance (averaged
over the 10000 landscapes) under conditions of both non-decomposability and deeom-
posability of the decision problems. Firms carry out myopic local search and they only
consider changing one activity at a time. The centralized firm evaluates an idea ontthe
basis of firm profitv = (v1 + v2 + v3 + v4 + vs + vg)/6. The decentralized firm is 11
assumed to have two departmemsand B, with departmentd controlling activities 12
{1, 2, 3} and departmeng controlling{4, 5, 6}. In each period, each department comes3
up with an idea which it then evaluates on the basis of the profit contribution of thase
activities that are under its exclusive control. This means that the evaluation critesia
used by department and B arevA = (vy + vo + v3)/3 andv® = (v4 + vs + vg)/3, 16
respectively. In evaluating an idea, a department takes the other department’s cutrent
choices as given. 18
In a decomposable environment with a block-diagonal interaction strudige ( 10
ure Z), they find that the decentralized firm outperforms the centralized firm in tere
short-run. This result is directly due to the asymmetric number of draws that arezal-
lowed under these two forms: the decentralized firm gets two draws per period (onefor
each department), while the centralized firm gets only one. As there is no interaction
between the activities of the two departments, there is no mitigating benefit from cen-
tralization. The average levels of performance under these two forms do converge irthe
long run, however. The reintegrated firm’s performance is nearly identical to that of the
decentralized firm. 27
The results are quite different when the organization searches in a non-decomposable
environment. Assuming a random interaction structure \ith= 2, the advantage of 20
having more draws under decentralization is offset by the coordination benefit attaisted
under centralization due to the presence of cross-departmental interdependencies.ore
interesting is the performance of the reintegrated firm. Prior to reintegration, the per-
formance is, of course, the same as that of a decentralized firm. After the departments
are integrated, performance not only improves but it eventually outperforms the cen-
tralized firm. The problem with the organization when it is centralized is that it is agst
to get stuck early on at an inferior local optimum, similar to the active CEO structure
in Rivkin and Siggelkow (2003)This is less likely with the reintegrated firm as it is37
initially decentralized. Once centralization occurs, it is more likely to be in the basin
of a better optimum which it can take advantage of now that coordination can oceer.
The lesson is that superior performance may be had by a temporal blending of diffesent
organizational forms. 41
Those simulations assume the organization starts its search from a random poirt on
the landscape. An alternative exercise is to suppose there is an environmental shoek af-
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ter the firms have achieved some steady-sfitggelkow and Levinthal (2003)osition 1
a firm at Hamming distancé from the global optimum—implying that the firms were2
at the global optimunex ante and then were thrown off it by a shock of magnitufle 3
In this setting, the question is how effectively a firm adimb back to the global op- 4
timum. Centralization outperforms reintegration for sufficiently low valueg,afhile 5
reintegration outperforms centralization for sufficiently high valueg.ofhe appro- 6
priate organizational form then depends on the size of the shock. The intuition is that
a centralized firm has a relatively high probability of getting locked onto nearby loéal
optima which makes it less suitable for large shocks but quite desirable for small shacks
since the firm is likely to start in the basin of attraction for a good optimum (recall thit
the firm started at the global optimum). By comparison, reintegration initially pursuetta
decentralized form and thus can better handle large shocks. The general lesson is that an
organization should be centralized at a steady-state but should temporarily decentr&lize
when there is a large change in its environment. 14
The preceding results suggest that there may be merit to grouping activities so that
there is some cross-departmental interdependence even when the decision probl&m is
decomposable. Suppose the interaction structure is characterized by the adjacency’ ma-
trix in Figure Z. An obvious grouping of activities would be to have department 18
charge of{1, 2, 3} and departmenB in charge of{4, 5, 6}, thereby eliminating any 1°
interaction between the activities controlled by these two managers. However, siich
a structure underperforms one which is eventually of that form but during the eady
periods hasA controlling {1, 4, 5} and B controlling {2, 3, 6}. Quite interestingly, the 22
temporarily scrambled firm is superior to the “ideally” decomposed firm because croSs-

departmental interdependence avoids excessive stability. 24
25

26
27

3.4. Evolving an organizational structure

Thus far the focus has been on comparing the performance of different element? of
organizational design. This begs the question of whether upper level management o? an
organization, which is endowed with a sub-optimal design, can effectively alter design
elements so as to achieve a superior structure. What makes this a non-trivial prob?em
is the presence of interdependence among component tasks, which is representatwe of
any complex system, be it social, biological, or technological. The significance of t?‘IIS

problem is well illustrated by Herbert Simon in the context of organizations: s

The basic idea is that the several components in any complex system will perforres
particular subfunctions that contribute to the overall function. ... To design such a7
complex structure, one powerful technique is to discover viable ways of decomss
posing it into semi-independent components corresponding to its many functionab
parts. The design of each component can then be carried out with some degree of
independence of the design of others... There is no reason to expect that the de-
composition of the complete design into functional components will be unique. . 42
Much of classical organization theory in fact was concerned precisely with this is43
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sue of alternative decompositions of a collection of interrelated taldksbprt A.
Simon, The Sciences of the Artificial (1996), p. 12§.

In a decomposable system such as the orfégare Z, the obvious division of tasks
would entail assigning activitiegl, 2, 3} to one department ang, 5, 6} to another.
As there is no interdependence between the sets of activities of these two departments
the optimal solution they arrive at independently will form the optimal solution for thee
entire organization. Alternatively, systems may have inherent “near decomposablllty
where they can be decomposed into a collection of subsystems with the property thaBt the
components within a subsystem interact more strongly than the components belonl%lng
to different subsystems, but with a certain degree of interdependence remaining between
the subsystems. In such situations, the problem solvers facing computational constramts
will be motivated to decompose the problem into subproblems in order to benefit from
parallel processing, while recognizing that the problem may not be decomposable. lj

A W N P

3.4.1. Ethiraj and Levinthal (2002) i
Define an organization’s “true architecture” to be a description giving the correct nuth-
ber of the organization’s modules and a correct assignment of functions to the respetiive
modules as dictated by the characteristics of the probighiraj and Levinthal (2002) *°
set out to identify the relationship between two key design eIements—decomposabWty
and hierarchy—and an organization’s abilitydiscover its true architecture.

They consider the following four structural types: (1) hierarchical and nearly dfé-
composable; (2) non-hierarchical and nearly decomposable; (3) hierarchical and #bn-
decomposable; and (4) non-hierarchical and non-decompogablee 3presents the 24
adjacency matrices of the systems that belong to each one of these categories %hen

= 9 and there are three non-overlapping modules labelled andc. Figure &2 26
is nearly decomposable and hierarchicalbdsin moduleb is influenced bya3 in 27
modulea andcl in modulec is affected byb3 in moduleb but modulec does not 28
influence modules or a and module> does not influence module Hence, the inter- 2°
module interdependencies are unidirectiofagjure 3 is nearly decomposable and3°
non-hierarchical in that modulesandb are mutually interdependent (through and 31
a3), while module® andc are mutually interdependent (throughandb3). Figure & 32
is a non-decomposable but hierarchical system as there is a tight coupling between fod-
ules in that all components of modulkeéc) are influenced by all components of module34
a (b) and are unidirectional. Finally, a non-decomposable and non-hierarchical $ys-
tem is captured ifrigure 3, where all modules are tightly and mutually coupled witts6
one another. For each of these four structures, search for the true architecture oéturs
through three operations: splitting, combining, and re-allocafphitting of modules 38
involves breaking up existing departments into two or more new departn@ombin- 39
ing is the opposite of splitting in that it involves integrating two or more departments.
Re-allocation is when the organization reassigns functions from one unit to another. 41

Suppose the module designer observes the presence or absence of interactions among
attributes within the module as the result of a change in an attribute. All attributes 4or
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(a)

Hierarchical and

Nearly Decomposable

(b)

al
a2

bl
b2

cl
c2
c3

Non-Hierarchical and

Nearly Decomposable

(c)
Hierarchical and
Non-Decomposable

(d)

al

Non-Hierarchical and

Non-Decomposable

al a2 a3 bl b2 b3 cl 2 c3
X X X
X X X
X X X
x| x x x
X X X
X X X
X | X X X
X X X
X X X
al a2 a3 bl b2 b3 ¢l 2 c3
X X X
X X X
X x X | x
x| x x X
X X X
X X X |x
X | x x X
X X X
X X X
al a2 a3 bl b2 b3 cl 2 c3
X X X
X X X
X X X
X X X | X X X
X x X |x x X
X x x| x X X
X X X |x x x
X X X [ X X X
X X X | x x x
al a2 a3 bl b2 b3 ¢l 2 c3
X X X | X
X x x| x X
X X X |x X X
Xx x x| x x x|x
X X | X X X | X X
x| x x x|x x X
X X X |x x x
X X |x X X
X | x x X

Figure 3. Adjacency matrix = 9).
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which their contribution to performance is unaffected by this change are identifiedtas
not belonging to the module that includes the original attribute. All such attributes are
either transferred to a randomly chosen different module (if they constitute less than half
the total number of attributes in the current module) or are split into a new module (cth-
erwise). If the change of the given attribute does not affect any other attributes within
the module, then the attribute is viewed as not belonging to that module. In this case it
is transferred to another randomly chosen module. In each period, the module designers
also consider combining each module with another module by randomly selecting #wo
modules and evaluating the impact of attribute changes in both modules. The modules
are combined if changes in each module affect the other and remain separate otheriRise.

Each module engages in one-step offline search based on local module performahce.
This occurs in parallel. When considering a population of systems in order to expl&re
recombination of systems or substitution of modules, they select two systems at rantfom
and then select two functionally equivalent modules at random for recombination. Fhe
lower performing module is replaced with the higher performing module. Finally, in the
multi-systems analysis, the selection mechanism used is the roulette wheel algoritim,
where the probability that a system is selected equals its performance level divided’by
the sum of the performance of all systems in the population at that time. 18

Consider a system witlv attributes for which the true architecture h#fsmodules
with each module having an equal number of attributes. The initial design of the sysf@m
is random and thus is likely to have the wrong number of modules, modules with the
wrong attributes, and modules with different numbers of attributes. The performaﬁzce
measure is the number of periods its takes for the system to converge to the true azrf?hi-
tecture.

The simulation exercise is based on 100 experiments, where each experiment invéives
a randomly selected landscape and initial design and entails each of the four archetzepes
being run. The simulations show that an organization always discovers the true strucztgure
when the system is hierarchical, even when it is non-decomposable. But when it is non-
hierarchical, an organization never manages to reach a stable state. The violation olegoth
principles—hierarchy and decomposability—is seriously detrimental to discovering grl]e
right structure. These results suggest that the search rule for discovering the true system
structure is robust when there is a strong interaction within modules and there i a
hierarchical precedence structure underlying between-module interactions.

19

34
35
3.5. What do we learn from a computational agent-based approach? 36

37
The primary issue explored in agent-based models of organizational search and leaeaing
is the role of organizational structure and, more specifically, how a centralizing authosity
can influence performance by coordinating certain activities. In this section, we wantoto
review what we've learned about when an organization should be centralized, highlight
the role played by the unique features of ACE models identified in Se2tioantrast 42
this insight with what a NCE analysis would produce, and make the case for ACE. 43
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One important insight is that decentralization can be advantageous even when gom-
plementarities suggest that coordination is valuable. Consider an organization in which
there are interdependencies across units. If each unit evaluates a new practice based
upon what it generates in terms of unit performance, then decentralized search carvlead
to lower organizational performance due to externalities across units. A NCE analysis
would suggest that centralization is beneficial because it internalizes these externatities
by evaluating the impact of a new practice in terms of organizational profit. In contrast,
Rivkin and Siggelkow (2003how using an ACE model that centralization can perforr
worse because it results in excessive coordination. Once a centralized organizatioreis in
the basin of attraction of a particular local optimum, it steadily marches towards it ard,
as a result, it never learns whether there are other more attractive optima. Underide-
centralization, individual units—each of which is engaging in hill-climbing using the
unit's performance—can inadvertently result in organizational performance declinirfy.
Though detrimental in the short-run, it may serve to throw the organization into tite
basin of a different and potentially better optimum. Put differently, the high level of co-
ordination achieved under centralization leads to excessive stability. Though stabilityis
desirable once a good optimum is reached, it can be harmful while learning because it
closes off alternatives. In the context of adaptive search—as opposed to optimal setec-
tion of organizational practices—coordination can be excessive. Second best arguments
are rampant within ACE models and this is one example—the limitations of adaptive
search may mean that fully internalizing externalities across agents can be detrimental,
an intuition quite contrary to what would emerge from an NCE analysis. 22

A second important insight is that centrally mandated uniform practices can be vatu-
able even when units face heterogeneous environments. Consider an organizatien in
which there are no interdependencies across units. Each unit is in a different enviten-
ment and organizational performance is the simple sum of the units’ performanceszAn
NCE analysis would suggest that decentralization is preferable as it allows practiges
to be tailored to the environment. Howev&hang and Harrington (200@how that 28
a decentralized organization creates dynamic externalities related to knowledge trans-
fer which impact adaptive search. Since units are solving similar problems, what ene
learns and adopts may prove useful to other units. Under decentralization, units3fail
to internalize the following externality: when a unit adopts a new practice that mowves
them away from other units, those other units can expect to learn less from it. A c&n-
tralized organization serves a coordinating function by keeping units’ practices closesto
one another, and this enhances knowledge transfer. Note that this result is producesl by
medium-run dynamics. In the long run the organization will typically achieve its globzl
optimum and, since the global optimum is lower when constrained to uniform practices,
decentralization outperforms in the long-run. 38

A unique feature of ACE models mentioned in Sectxia the complexity of the en- 39
vironment, and this indeed played a central role in the preceding analysis. Complexity is
measured by the ruggedness of the landscape. A more rugged landscape means mate op-
tima, in which case it becomes easier to get stuck on poor op@imeng and Harrington 42
(2000)show that a more complex environment makes knowledge transfer more impor-
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tant as it is more difficult for a unit, learning on its own, to succeed. This implies that
more complexity means centralization is more likely to be preferredoliman etal. 2
(2000) organizational form matters only when environments are moderately complex.
In Rivkin and Siggelkow (2003}he potential advantage to the enhanced coordinatian
from centralization increases with complexity (which is associated with more inter-
dependencies) but the chances of getting stuck at a bad optimum also increasesswith
complexity. When the environment is moderately complex, the first effect dominates
so that centralization performs better but, when the environment is very complex, &he
second effect dominates so decentralization outperforms. o
The above discussion reveals that ACE delivers different insight than would an NQE
analysis. Furthermore, in reviewing NCE research on organizations, the forces at work
are quite distinct. In one class of NCE models, organizational structure affects thetin-
centives of lower-level agents to produce useful information for higher levedgytion 13
and Tirole (1997)decentralization promotes lower-level agents’ incentives to invest ifh
acquiring information—as their decision is less likely to be overruled (and there is litte
value to investing in information if the information doesn’t make a difference)—but &t
the cost of them pursuing their own interests which are distinct from the interests ofthe
organization. IrDessein (2002)the problem is that lower-level agents may distort thé?
information that they pass along to higher levels. A second class of models focuse¥on
how organizational structure influences monitoring, wages, and the incentives for agé&nts
to work hard. InQian (1994) a more hierarchical organization (which means more lev?
els and each manager has fewer agents to monitor below him) enhances monitéfing
and lower wages but is less producti%askin et al. (2000fompare the/-form and 2
U-form with respect to their productivity in monitoring when pay is based on relativé
performance. The emphasis, the forces, and the insight of these organizational mdelels
are then quite different from ACE organizational models. While ultimately these altét-

native approaches may compete, thus far their analyses are complementary. z
28

29
4. Information processing Z‘;
Economists have also often failed to relate administrative coordination to the the>
ory of the firm. For example, far more economies result from the careful coor—33
dination of flow through the processes of production and distribution than from>" e
increasing the size of producing or distributing units in terms of capital facilities .
or number of workers. Any theory of the firm that defines the enterprise merely
as a factory or even a number of factories, and therefore fails to take into accoun
the role of administrative coordination, is far removed from realfyfred Chan-
dler, The Visible Hand: The Managerial Revolution in American Business (1977),
p. 490]

41

As reviewed in the previous section, search and learning models of organizations have
agents receive new ideas, evaluate them, and then decide what to do—whether to distard
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them, pass them along to a superior, or implement them (depending on the allocation of
authority). An implicit assumption is that the evaluation process is costless and instanta-
neous. This is a striking departure from reality. It can take resources, time, and expestise
to evaluate new information and then make a decision. This section considers the @osts
of processing information. An organization takes input from the environment (“data”)
and performs operations on it prior to making a decision. Information processing is
costly because, for example, it requires hiring agents and it imposes delay in reaching
a decision under the constraint of avoiding information overload. Though all models
of organization involve information processing to some degree, we have reservedhis
terminology for those models where the cost of processing is explicitly modelled anebis
a primary force determining organizational performance. 11

The organization is faced with a task which, if it were to be handled by a single agent,
would translate into long delays and inaccuracies due to processing and memory &on-
straints. A more efficacious structure involves distributed problem-solving—multiple
agents solving sub-problems and then putting these sub-solutions together to produce
a solution for the original problem. We'll address the following questions: What is the
best size and structure of an organization? What is the best way in which to allocate sub-
problems, organize information flows, and more broadly connect agents so as to lea#l to
fast and accurate solutions? Should the organization be “flat” so that many agentsdare
handling data? Should it be decentralized like a team or centralized like a hierarcity?
How many levels should the hierarchy have and should communication channels2tut
across levels so high-level personnel connect with many levels? In addressing teeese
guestions, research has considered two sets of factors: first, the characteristics of agents
with respect to their cognitive skills and accumulated knowledge; and second, the char-
acteristics of the environment in terms of its complexity, stability, and decomposabil®y.

We begin in Sectiod.1 with the canonical model of an information processing or26
ganization and an exploration of its generic properties—properties that hold for ni3st
networks, not just optimal ones. The impact of organizational structure on performatice
when agents have the capacity to learn is investigated in Set®while organiza- 2°
tional design endogenously evolves in the models reviewed in SekBowe conclude 30
with a critical discussion in Sectioh4. 31

32

4.1. Generic properties of information processing networks 33

34
Radner (1993¥lescribes the canonical information processing problem faced by an ¥r-
ganizatior?? The organization is a network of agents (or information processors ¥r
nodes) which are endowed with a fixed ability to process incoming data and a limitéd
capacity for doing so. For example, data might be a series of integers, the processotthas
the ability to multiply them together, and its capacity limits it to handling seven nur#f-

bers. The architecture defines how information is distributed and tasks are assignefi. In
41

42
22 Also seeVan Zandt (19993nd, for early work on modelling an organization as a netwbDdw (1990) 43
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this canonical model, information enters the lowest level where it is processed and sent
through the network for further processing. Once processing is completed, an ouwtput
(that is, an organizational decision) emerges. The basic line of inquiry investigatessthe
relationship between size and structure of the network and performance, which is mea-
sured by the speed with which a problem is solved. More nodes in the network (or nfore
agents in the organization) provide more processing power—which may be particularly
critical when agents have limited capacity—but at the potential cost of more delay as
information has to traverse a longer path. Under certain conditions, it is shown thatsthe
most efficient network is a particular type of hierarchy. 9

10

4.1.1. Miller (2001) 11
12

This canonical problem is explored Miller (2001) with an eye to learning generic 13
properties of networks. He considers randomly generated networks with the hopes of
identifying “order for free” without the expense of optimality. The organization faces'a
series of associative (and thereby decomposable) problems. The organization recsives
data in the form of a series of integers and the task is to generate their sum. Each agent
has the ability to sum two numbers. With this class of problems, and given the assump-
tions placed on agents, accuracy is assured and the performance of an organizatien is
measured by the delay in generating a solution. As the associative nature of the problem
means that the sequence with which it is solved is irrelevant, such problems are ripe:for
distributed problem solving. 22

An organization is a network of nodes with each node being a processor and repre-
senting an agenkigure 4shows all of the possible (non-redundant) networks associated
with five bits of information,(«, b, ¢, d, ¢), where each bit is handled by exactly ones
agent. For example, a single-agent organization has all five bits coming into that agent
who must progressively sum them by addin b, then adding the solution tg and so 27
forth, until the solution is derived after four operations and four periods. In comparisen,
there is a three-agent network (denoted #12) in which one agent sums three bits, anather
sums two bits, and a third sums the sub-solutions. The first two agents are referred to as
child agents to the last one, who is the parent agent. Note that this network takes fewer
periods to derive a solution but at the cost of more agents. 32

Faced with a sequence of problems, an agent is not allowed to work on the Bext
problem until its output is retrieved by the next agent in the network. An agent can be4n
one of three states: (i) inactive; (ii) active and unfinished; and (iii) active and finishedsin
which case it can, if called upon, convey its solution to its parent agent. An agent nast
decide on what problem to work, whether any sub-solutions from child agents carsbe
incorporated, and whether more processing is required on the current problem. Wsen
an inactive agent is activated, it either tries to draw a child agent’s solution or data frsm
the queue. An agent remains active until processing is completed and the sub-solation
is taken by the parent agent. 41

For the purpose of identifying generic properties, Miller considers random networks
constructed as follows. A number of nodes is randomly chosen from between 1 and%0.
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37
The organization is iteratively constructed starting with a single node to which a childds
added. One of those nodes is randomly selected and a child is added to it. This contisues
until the network has the specified number of nodes. Finally, all terminal nodes are
connected to the data queue and an interior node is connected with probatdlity 1 41
To explore the significance of synchronization of agents in distributively solvingsa
problem,Miller (2001) compares the performance of networks where nodes are rah-
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domly activated with one in which there is “ordered firing” so that child nodes are
activated before parent nodes. Some interesting properties arise when exploring zhow
performance is related to organizational size, as measured by the number of nades.
When firing is synchronized, performance mildly increases with size while, with ran-
dom firing, performance appears to be maximized at an intermediate number of nodes.
This suggests that, to sustain larger organizations, synchronization among agents i$ crit-
ical. Also noteworthy is that the variation in performance across random networks is
greater for small organizations. The possible explanation is that they are more 8us-
ceptible to bad design causing bottlenecks, which creates delay as agents wait for
sub-solutions from other agents. In contrast, the denser web of connections when fere
are more nodes allows information to flow more freely, which serves to make the géar-

ticular architecture less important. 12
13

4.2. Organizations with adaptive/learning agents i:
Now consider an organization that faces w@atley (1992)alls a quasi-repetitive task. 13

In each period a problem arises asiahselection from a finite set, which provides two_
types of opportunities for the organization to learn. First, if the cardinality of the set of
problems is not large relative to the number of periods, the organization is likely to face

a problem repeatedly so they can learn from past mistakes. Second, the problems may
be related, in which case the solution to one problem provides information pertinzeznt
to solving other problems. The challenge is to learn the latent function generatingztshe
problems. For an organization to take advantage of these opportunities, agents must
be endowed with a capacity to learn. Exploring how the ability to learn influences the

relationship between organizational structure and performance is a central issue.

27
4.2.1. Carley (1992) 28
29
Suppose an organization faces a sequence of binary classification problems. For exam-
ple, suppose that a new project arrives each period and the organization has to decide
whether it isprofitable or unprofitable. It receives information on the project that takes:
the form of an element o, 1}". There is a true (fixed and deterministic) latent mapss
ping from {0, 1}"V into {profitable,unprofitable} which assigns the status gfofitable 34
when a majority of the bits take the value 1. Each drawn problem assigns equal peeb-
ability to a bit being a 0 or 1. Based on the information, the organization must dectde
whether or not to conclude it frofitable. 37
In contrast to the rich set of organizational structures allowelither (2001), here 3s
just two organizational forms are considered, hierarchy and team. A hierarchy cem-
prises three levels where the lowest level has nine agents (referred to as analystsywho
receive the data. The data consistingMofbits are partitioned into nine sub-vectorsa:
with each analyst receiving one of them. In response to observing an element from
{0, 1}V/°, an analyst puts forth a recommendation, eitrefitable or unprofitable, to 43
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an agent (manager) at the next level. There are three managers and each receives rec-
ommendations from three analysts. At the top is a single agent (CEO) who receies
recommendations from the three managers and makes a final evaluation regarding prof-
itability of the project. A team is also comprised of nine analysts but has just one level.
Each analyst makes a recommendation in response to their input, and the organizational
decision is based on majority rule. Though the number of decision makers variessbe-
tween the two organizational forms, the number of agents receiving information about
the problem is the same. 8
Agents engage in experiential learning about the latent mapping bef@eBf and ¢
{ profitable,unprofitable}. After the organization makes its decision, all agents obserue
the true state of the project. Each agent keeps track of how information relates to:the
true state. For example, an analyst keeps a running tab of how many times a projectiwas
profitable for each observed input fror0, 1}V/°. Similarly, managers and the CEO13
keep track of how many times a project wasfitable for each observed element from 14
{ profitable,unprofitable} . The specified behavioral rule is that an agent repmaé 15
itable (unprofitable) in response to his information when the fraction of times that the
true state waprofitable (unprofitable) for that given information exceeds 50%. When it17
is exactly 50%, the agent randomizes. 18
The task varies in terms of complexity and decomposability. Complexity is measured
by the length of the data vector. More data means more problems, with less opportunity
to see a particular problem repetitively, and also a bigger set of possible mappings to
sort among. A problem is referred to dscomposable consensual when all analysts 22
are given the same sub-probléfhFor example, the task 110110110 is decomposabte
consensual to three analysts. Since the more frequent bit value for each analyst isalso
the more frequent bit value for aN bits, in principle an individual analyst can comezs
to correctly identify a project’s true state based only on his w9 bits of data. By 26
contrast, a non-decomposable task is when the accuracy of an individual's predictien is
dependent upon information possessed by others. For example, the task 111010080 is
nondecomposable to three analysts as one analyst receives 111, a second receives 010,
and the third receives 000. This information is insufficient to determine whether 1 isin
the majority and thus that the projectpsofitable. 31
One of the unique and interesting features of this model is personnel turnover. #c-
cording to a Poisson process, an agent may be replaced with a nevéhgeatysts can 33
be replaced with someone who has no experience (“novice”), someone who has experi-
ence with 500 sub-problems generated by the same stochastic process (“good fit")zand
someone who has experience with 500 sub-problems in an organization with a sligistly
different problem-generating process (“poor fit"). Managers can also be replacedzal-
though their replacements are restricted to be novices. Given that agents are learging,
39

23 The modifier “consensual” is added because this task is more restrictive than the standard definitic?g of
decomposability (see Secti@h A problem can be decomposable but not involve identical sub-problems.

24 Here, turnover is exogenous though in other models it is endogenous. An agent may decide to leave3s in
Axtell (1999), and managers may decide whether to hire someone Glainte et al. (1997) 43
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replacing experienced agents with possibly less experienced ones obviously deteriorates
performance. Less clear is what type of organizational structure better handles suctrdis-
ruptions. 3

In contrast taMliller (2001), the organization is not necessarily given enough data to
correctly solve the problem. Thus, performance is measured by the accuracy of solu-
tions. The average percentage of correct assessments in the final 200 of 2500 periods
measures long-run performance, while the average number of periods it takes to reach
60% accuracy serves as a measure of the speed of learning. As there are only twe true
states and the organization is endowed with no experience, it is initially guessing ane so
starts with 50% accuracy. 10

For either organizational type, performance is greater with a less complex task and
when the task is decomposable. Teams learn significantly faster than hierarchies (though
an important exception is noted below). A key force at work here is information loss.
Analysts convert information defined on a space with®&lements into a signal from 14
a two-element space. In the hierarchy, managers take information defined on an eight-
element space (the three possible recommendations from those at the next lower level)
to a two-element space. On these grounds, one expects teams to perform better because
there is less information loss; it occurs twice for a hierarchy but only once for a team.
However, when turnover is sufficiently high, hierarchies perform better for both de-
composable and nondecomposable tasks. It is unclear whether this is due to hierarghies
being less sensitive to the recommendation of a single rogue analyst or to their managers
having more experience. 22

23

4.2.2. Barr and Saraceno (2002) 24
25

A similar exercise to that o€arley (1992)s performed inBarr and Saraceno (2002) 26
though a distinctive feature of their approach is to model the organization as an artifizial
neural network (ANN). The organization’s task is to identify the latent relationship bzs-
tween information that lies if0, 1}1° and the true state that lies {8, 1, ..., 1023 (as 29
the latent function converts 10 binary digits to its equivalent number in base 10). Bhe
organization is an ANN with three layers (segure 5. The input layer is comprised 31
of ten input nodes, each of which receives one of the ten bits of data. The next (hidden)
layer is made up of nodes—which can be interpreted as the lowest level in the orga#i-
zation with each node being an agent. Each of these agents takes a weighted sum &f the
data from the input layer and transforms it into an output. Thesatputs then go to 35
the top level where they are weighted and summed to produce the organization’s ougput.
This output is a prediction of the true state. 37

On a broad level, learning is equivalent to thaQarley (1992though the specifics 38
differ both because of the type of function being learned and the use of an ANN. Bhe
state of the organization is represented by the weights that each node in the low kevel
uses to produce output for the high level and the weights that the high level usestto
produce organizational output. Initially, these weights are randomly selected. After4e-
ceiving data, the organization produces an output, derngtaad then agents observe43
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the realization of the latent functiom, Each agent calculates the gradient of the meaii
squared error(1/2)(y — 5)2, with respect to their weights and incrementally adjust®
them in the direction that reduces mean squared error, taking other agents’ weight8 as
fixed. 31
While Carley (1992)ixes organizational size and varies structure, here structures?s
fixed at the two-level hierarchy and the role of size, as measured by the number of [&w-
level agents, is explored. Interestingly, a bigger organization is not necessarily better.
The reason lies in two types of prediction error. Approximation error is associated with
the limited capacity of an ANN to represent a latent function. By expanding the sp&¢e
of approximating functions, more agents reduce approximation error. Of course, better
fit also depends on the efficiency with which the coefficients (weights) of the ANN ae
estimated. The authors refer to this as estimation error and it measures how badlysthe
ANN performs relative to maximal performance for a given size. The trade-off is that
a larger organization reduces approximation error but, with more agents and thus rmore
weights to be estimated, estimation error can rise. Clearly, with enough data, a bigger
organization means better predictions; but, as in the real world, the simulations have
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only a limited number of problems from which to learn. Small firms are interpreted as
having a simpler class of functions—they don’t need many problems to get low estima-
tion error—while large firms have a richer class of functions—they are slow to learn but
may ultimately have a more sophisticated solution. 4

An organization is faced with a set of feasible problems, each of which is a randem
draw from{0, 1}1°. The complexity of the environment is measured by the size of that
feasible set, which numbers at most ten. Stability is measured by the probability that
an element of the feasible set is replaced with a fresh draw i 1°. This random &
event occurs each peridd Performance depends on the accuracy of an organizatioa’s
solution and, more specifically, equals the inverse of the squared error less the cost of
the network. Network cost is composed of a cost per agent plus the cost of delay, wiich
is linear in the number of operations performed on data. Larger firms experience greidter
network costs but may have less error. 13

Optimal firm size is typically found to be an interior solution, reflecting the trade-off
from a bigger organization: less approximation error, more estimation error, and a higher
network cost. The most interesting results concern the interaction between stability‘and
complexity. When complexity is high, the optimal number of agents is lower when tie
environment is less stable. With the set of problems to be learned changing at a faster
rate, agents have to adapt their weights more frequently, and this is done less effectively
when there are more weights to adjust. When instead complexity is low, optimal f#m
size is higher in unstable environments than in a near-stable environment. With #ow
complexity, there are only two problems to be learned and this doesn't require méhy
agents. As stability falls, the set of examples is changing at a faster rate and ha%¥ing
more agents allows the organization to adapt faster. More broadly, these results seéfn to
suggest a rising marginal cost to the number of agents. With only a few problems té%e
learned, the organization is initially small so that reduced stability is best handledzby
adding agents. However, if there are a lot of problems, then the organization is alreddy
large and adding agents in response to less stability means having to adjust fa2&oo
many weights. It is preferable to reduce the number of agents, thereby trading off lo%er
estimation error for higher approximation error. 30

31

4.2.3. Barr and Saraceno (2005) 82

33
In an ensuing paper, the authors make a modelling advance that is innovative from Both
a computational and economic perspective. They allow two ANNs—each represént-
ing a firm—to coevolve in a competitive market situation. The situation is the clasgic
symmetric Cournot game in which two firms make simultaneous quantity choices. Fhe
demand function is linear and its two parameters followidrstochastic process. The 3

task before a firm is to learn its optimal quantity where the data it receives pert3#in
40

41

25 Unfortunately, the model is designed so that a less complex environment implies a more stable one, wifich
means any comparative statics with respect to complexity confounds these two effects. 43
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to the unknown demand parameters. Learning is modelled &8ainand Saraceno 1
(2002) A firm chooses a gquantity then lear@spost what would have been the profit- 2
maximizing quantity. Learning occurs in the face of an exogenously stochastic demand
function and an endogenously stochastic quantity for the other firm. 4

In comparison withBarr and Saraceno (20QZhe environment is stable and theres
is no network cost so performance equals profit. Given the absence of network cests,
the only reason not to have more agents is greater estimation error. The coevolving
system always converges to Nash equilibrium; that is, each firm’s quantity converges
to that which maximizes its profit. As this occurs for each realization of the demand
parameters, firms are learning how the signals map into the true state of demand. Fuxther
analysis shows that average profit is initially increasing in a firm’s own network size
but, due to estimation error, is eventually decreasing. More interesting is that a firm’s
performance is initially increasing in the other firm’s network size. We conjecture tke
reason is that a smaller rival learns slower, which means it takes longer for its quantity
to settle down. This would translate into a more volatile environment for a firm ard
serve to lower its profit. Interestingly, it may be in the best interests of a firm that its
competitor be sophisticated. 17

18

4.3. Adaptation and evolution of organizational structure 19

20
In performing comparative statics to explore the impact of organizational size and steuc-
ture on performance, a critical question is begged: To what extent can an organization
find and adopt better structures? When dealing with complex entities such as an crga-
nization’s architecture, it isn’t sufficient to characterize optimal structure and presusne
an organization somehow finds it. Actual organizations are endowed with a structare
and find large-scale change difficult. It is then worthwhile to know whether incremerval
changes can lead to superior designs. In addition, models of the previous section zon-
sider a very limited set of structures. By instead specifying a large class of organizatins
and a flexible dynamic for moving among them, new structures can emerge that are guly
novel. To address these issues, we rev@awley and Svoboda (1996)here simulated 30
annealing searches for better organizations. We also return to disciifierg2001), 31
who utilizes the forces of selection and adaptation through a genetic algorithm (GR).
The driving question is, how effectively can an organization evolve to efficacious strege-
tures and what do those structures look like? 34

35

4.3.1. Carley and Svoboda (1996) 36

37
With some minor modifications;arley and Svoboda (199@dapt the organizational 38
model of adaptive agents @farley (1992)py appending an organizational design dy-=°
namic to it. Thus, structure is adapting at the same time that agents are learning. Askey
feature of this type of model is the class of organizations over which search occers.
An organizational structure is defined by the number of agents, which agents recé&ve
data, and how agents are connected. The set of feasible organizations is limited to #3ose
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with at most three levels (where each level can only report to the next higher levely, at
most fifteen agents on each level, and at most nine pieces of information on a task. In
the event that the highest level has more than one agent, those agents use majority rule
to determine the organization’s choice with an equality of votes being broken through
randomization. 5

Upon this space of organizations, a dynamic is applied which constructs a new feasi-
ble organization through four operations: (i) firing (the elimination of agents); (ii) hirirg
(the addition of agents); (iii) re-tasking (a link to the data queue is redirected from e@ne
agent to another); and (iv) reassigning (a link between two agents is changed sosthat
an agent reports to a new agent). Faced with a new design, the process by whichit is
adopted is modelled using simulated annealing. First, an offline experiment is performed
whereby the organization’s performance (as measured by the accuracy of the orgariza-
tion’s decisions) is projected out for 100 tasks under this new design. If this performarice
exceeds the performance of the existing design then the new design is adopted. If perfor-
mance is lower—and here lies a singular feature of simulated annealing—it is adopted
with positive probability where this probability decreases with the existing design’s per-
formance during the preceding 500 periods (where there is one task each periodyand
also exogenously declines every 200 ta&k$he minimum time between new designs
adoptions is 100 periods. The initial organizational structure is randomly selected &nd
there is a training period of 500 periods before the design dynamic is turned on. 20

As a theoretical benchmark, the optimal design is to have a one level organization
with nine agents, each receiving one of the nine bits of info, and making their decision
by majority rule. Simulated annealing never finds it. Compared to random organiza-
tions, the organizations that emerge after 20 000 periods have noticeably more agents
on average, a lower span of control (the average number of links to a higher level agent),
and fewer links to the data queue though none of these differences are statisticallyzsig-
nificant?” Though the results of the analysis are ambiguous, the approach represerits a
pioneering step in modelling the evolution of organizational structure. 28

29

4.3.2. Miller (2001) 30

31
Finally, let us return taMiller (2001) whose work on randomly generated organization®
was reviewed earlier. Recall that the task is associative and thereby decomposables As
all solutions are accurate, the performance criterion is speed. Using a genetic algori#thm
(GA), a population of fifty randomly created organizations coevéfvim each gener- 35
ation, there is a sequence of problems that each of the fifty organizations solves. 3wo

37

38
26 The purpose of this feature is to try to keep the organization from getting stuck on bad local optima.zBy
accepting performance-deteriorating designs, the organization might get kicked into the basin of attractioibfor
a better local optimum.
27 They actually run two experiments and the results referred to here are for the case of “dual Iearning.”41
28 Also seeBruderer and Singh (19969r an early use of a GA in organization theory. For more detailed?
discussions of GA learning, s&enner (2005andDuffy (2005) 43
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organizations are then randomly selected and replaced with two copies of the one with
greater speed. This operation is performed fifty times with replacement. These organi-
zations are then randomly paired to engage in two genetic operations—crossoverfand
mutation. For crossover, a node (other than one that is attached to the data queue) i8 ran-
domly selected from each organization and the subtree beginning with each node fthat
is, the node and all of its children) are exchanged. Each organization also has a chance
of mutating, which means a change in links. A single run has fifty generations and the
output for analysis is the best organization after fifty generations. Results are baseéll on
an average over fifty runddiller (2001) considers the four possible cases associatgg
with random versus ordered firing and single versus multiple problems. 1

To begin, is a GA outperforming random search? For comparison purposes, rangom
search means starting with a set of randomly generated organizations (comparahle in
number to what the GA handles over its fifty generations) and choosing the best per-
former. GA is also identifying a best performer but uses crossover and mutation as well.
For the case of ordered firing and a single problem, the GA impressively reduces sp&ed
by 25% compared to random search. For the other three cases, the reduction is corisid-
erably more modest at 2%. Still, the GA is creating better structures. 18

Whether the organization is trying to solve a single problem or a sequence of pr’é’b—
lems, results show that synchronizing the activation of agents sustains larger organlza-
tions with more levels. For a single problem, a GA produces, on average, an orgamzatllon
with 34 agents and eight levels under ordered firing while organizations are quite srpiall
under random firing with only three agents and less than two levels. Adding agents al-
lows more processing to be done but at the cost that information has to travel through
more levels. This can create delay, which makes ordered firing critical in keepingsit
under control. The superior performance of larger organizations is even stronger with
multiple problems (and ordered firing) as the average size of 48 is pushing the upper
bound of 50 agents. The range of size is 43 to 50 for the 50 runs (with a standard-zele-
viation of 1.9) which further suggests that to be a top performer requires being big3dn
contrast, for the case of a single problem, the range is vastly greater; it runs froft 7
to 50 with a standard deviation of 14.2. When an organization has a light workload? a
wide range of structures can perform well; when pushed harder, it becomes cruu&? to
be larger so problems can be effectively handled without much delay.

In conclusion, a challenge for analysis is developing informative summary StatIStICS
for emergent structureddiller (2001) goes to considerable lengths by also reportlng7
mean path length, highest level attached to the queue, and maximum number of ngdes
at alevel. Still, it's hard to see from these measures what the architecture looks like. @ne
suspects it wouldn't “look like” a typical corporation. Having meaningful summary stag
tistics for designs is essential for drawing insight and comparing results across studies.
Indeed, two studies could produce organizations with a comparable number of nades
and levels but result in quite different structures. This is a challenge for future work.43
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4.4, Summary 1
2

Contrary to the models of search and learning in Se@jdhe models explored in this 3
section focus on organizational size as a critical factor in connection with an organiza-
tion as an information processing network. Generally, more agents available to proeess
information acts to improve predictions and produce better decisions. The analysis of
Carley and Svoboda (199@ndMiller (2001) both find that their adaptive design dy-7
namics produce organizations with more agents. This advantage to size is more acute
when the task is more complex, as the organization needs the additional processing
power that comes from more agents. But bigger is not universally better. This is ab-
vious when one assumes there is a cost to more nodes in a network, but as shown in
Barr and Saraceno (2002, 200%)ore agents to “train” may slow down an organizas2
tion’s rate of learning. While the long-run efficiency of a network is increasing with the
number of agents, smaller organizations can outperform in the intermediate run. This
advantage from fewer agents is particularly relevant for a less stable environment where
perpetual training occurs. 16

A second but more tentative piece of insight is that while bigger is typically better,
organizational structure and coordination among agents may be more critical for bigger
organizationsMiller (2001) finds that, when lower-level agents are activated prior te
higher-level agents, the best performing organizations are vastly larger than whereac-
tivation is random. Synchronization is then critical for taking advantage of larger size.
This relationship between size and structure requires further examination. 22

In conclusion, research on information processing is trying to develop a “produg-
tion function” for organizational decision-making, a difficult and challenging problenu
Though significant progress has not yet occurred, the modelling approaches have feen
rich, novel, and provocative. 26

27

28
5. Effort, norms, and endogenous hierarchies 29

30
While the vast majority of computational agent-based models of organizations focugses
on search and information processing, there are many other organizational issues tack-
led. Here, we provide some of the best of this other work and in doing so touch on issyes
of effort and shirking, norms, and endogenizing organizational structure. 2

35
5.1. Effort and the commons problem in organizations®® %

[H]ardly a competent workman can be found in a large establishment. .. who doeg3
not devote a considerable part of his time to studying just how slow he can work
and still convince his employer that he is going at a good pdémderick W.
Taylor, The Principles of Sientific Management (1919), p. 21].

40
41
42

29 The issues addressed in this section are closely related to the concéamssén and Ostrom (2005) 43
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The models of organization considered thus far have assumed that the efforts required
of agents—be it associated with production, innovation, or information processing—
are achieved costlessly. Of course, effort is, in practice, costly and, more importantly,
poses the organizational challenge of inducing agents to work hard. Organizations suffer
from the “tragedy of commons'Hardin, 1968 whereby agents shirk from a collective s
perspective. The essential problem here arises from the possibility that an agent anay
have toshare the returns to his costly effort with other agents in the organization. White
all agents would be better off if all were to exert effort, shirking with the intention t®
free-ride may turn out to be the dominant strategy for each individual agent. Assan
individual's share of the returns to his/her effort is likely to depend on the numberof
other agents in the firm, the incentive to shirk tends to be affected by firm size. This
intuition plays an important role in the ensuing analysis. 12

13
5.1.1. Axtell (1999) 14

15
Consider a population of (non-competing) firms with workers being able to partially
control their exposure to the intra-firm commons problem by switching firms or even
starting their own firm. As the mobility of the workers implies that the size of the exisk
ing firm can change, it has implications for the extent to which workers will free-ride.
A central focus ofAxtell (1999)is on the dynamics of a population of firms whosexo
number and size are endogenous. 21

A firm having M > 2 workers engages in production through the joint efforts of itg
members. Let; € [0, 1] denote workel’s level of effort andE = Zi"il ¢; bethe total 23
effort of the firm. The firm’s valueV (E), takes the following formV (E) = aE4+bEP
with a,b > 0 andg > 1. Assume an egalitarian sharing rule so that each workegy
receives exactly (E)/M. Denote byU; (e;, E_;; M) the utility of workeri in a firm of
M workers, where he supplies and everyone else supplis ; (= E — ¢;). Workers 57
are assumed to have Cobb—Douglas preferences for income and leisure such that g

29

Viei+ E_)\" o
Ui(ej, E_;; M) = (T) (1—e)t%, () =0
31

where6; is workeri’s relative weight for income over leisure (which equals-%;). 32
Preferences are heterogeneous in the populatigh @san independent draw from a s3

uniform distribution on [01]. 34
To characterize the population of firms, [&tz) be the number of firms operating ss
atr and M/ (t) denote the size of firmji € {1,..., J(t)}. ¢/ (t) and E/ (¢) represent, 3s

respectively, the effort exerted by workiein firm j and the total effort level of firmj. 37
The initial configuration for the computational experiment assumes a populati@n ofs
workers andV single-worker firms. 39
In any given period, a fixed number of workers are randomly selected to alter their
behavior. Workers are myopic optimizers in that, in peripgach chooses effort to 41
maximize period utility under the assumption that the periotbtal effort of the other 42

members equals what it was in the previous period, which is deriﬁie;d — 1) for 43
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firm j, and the number of its workers is the same as previously, whigVig — 1). In
this casej was a member of firnj in ¢+ — 1. If he remains at firny, then workeri’s

optimal effort Ievel,’ej(t), is

?l.j (t) = argmax; (e, Eii(t —1); M/ (t — D). (6)

N o g WN P

This gives expected utility from remaining at firjn
Alternatively, worker can join another firm or start up a new firm (which will, at least
initially, consist only of himself). As regards the former option, workés (randomly) o
endowed with a network af; other workers and can consider joining the firms to whicho
they were members at— 1. The baseline simulation assumgs= 2 Vi. For each of 11
these alternatives, the worker computes the maximal utility level using the procedure
described in(6). Out of the (at mosty; + 2 firm-options, a worker chooses the oneis
yielding the highest expected utility. 14
Simulations show that the stochastic process by which firms are created, expandand
contract never settles down. Furthermore, there is considerable intertemporal flucia-
tions in the number of firms, average firm size (as measured by the number of workers),
and average effort. Though average firm size is only four, firms can grow to be mugh
larger. The basic forces are that, as firm size grows, increasing returns to total effort
enhances marginal productivity—thereby making it more attractive for a worker to jain
the firm and thus leads to growth—but the free-riding problem is exacerbated with mare
employees—which serves to contract firm size. Firms expand when they offer a high
value per worker as it induces workers to join. Now recall that a worker’s optimal effast
is based on therevious period’s firm size and effort. Thus, a firm that currently has a
high value per worker will experience a high inflow of new workers and, furthermors,
this will continue to result in a high value per worker because each of those workers
base their effort on a smaller sized firm so there is less free-riding than is appropriate
for a firm of that size. This serves to attract yet more workers to join and, as long aszhe
flow of workers into the firm remains high, increasing returns in total effort stays ahead
of the intensifying free-riding problem. In this manner, a firm can experience shasp
growth but it is also why it cannot maintain large size because once the flow of new
workers subsides (which is sure to occur since there is a finite population of workees)
then free-riding becomes the dominant force; value per worker declines and this Ieads
to a rapid exodus of workers. Firms grow but then, like the bursting of a Ponzi scheme,
eventually collapse. The model is parsimonious as a rich set of dynamics is generated
by three factors: increasing returns, free-riding, and worker mobility. 36
Though focusing on a different set of issues, the worlkxtell (1999)has a prede- 37
cessor inGlance et al. (1997)The latter authors model two organizational dilemmass
the lack of accountability in large organizations with the free-riding that ensues, asvis
in Axtell (1999), and the risk associated with training workers who are mobile. An ofe
ganization realizes the benefits from training employees only if they remain with the
organization but, once trained, a worker may leave to join another organization. #o-
wards encompassing this latter iss@ance et al. (1997¢nrich the flat organizations 43
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of Axtell (1999) by assuming each firm has a manager whose role is to decide whether
to train workers and whether to add workers. A worker can join a firm only upon invi-
tation by its manager. Both of these distinctions result in modelled firms closer to real
firms than those idxtell (1999) 4

In an early model of the commons problem in a team production settilehjan 5
and Demsetz (1973)roposed a top-down organizational solution to free-riding. The
firm is hierarchical with salaried workers and a capitalist who is motivated to monifor
worker effort by virtue of being the residual claimant of firm profit. In contr&nce 8
et al. (1997)and Axtell (1999) take a bottom-up approach to the issue by assumifg
that the workers themselves can independently control their exposure to the comnions
problem by moving from one firm to another and that they also share in the firm’s profit.
Augmenting these models with the mechanismitwhian and Demsetz (1972yould 12
move these models in a useful and realistic direction. In particular, firm size is greatly
limited in these models because of the intensity of the free-riding problem. Allowiky
multiple layers with each layer monitoring the one below them could allow for larger
firms and perhaps even persistently large firms, which is a feature of the data (seéffor

exampleMueller, 198§ but not a property of the model. 7
18

19
20

5.2. Organizational norms

At one point during his investigations, [consultant] Sym-Smith asked [Sears man®
agers] how controversy was handled at the upper level of Sears. He was toltf
that there was no controversy. Senior Searsmen were trained from their corp&§
rate infancy to participate in a veritable cult of contrived harmony and consensus™’
[Donald R. Katz,The Big Sore: Inside the Crisis and Revolution at Sears (1987),  *°

p. 28] -

As discussed earlier in the context of organizational search and learning, the longzgun
performance of an organization depends crucially on the way it balances exploration
with exploitation. There are two issues central to this trade-off. First, exploitationsat
the organizational level relies upon diversity at the agent-level; there must be sosme-
one who knows something special in order for the rest of the organization to learn
something new and possibly useful. When agents engage in independent innovation,
diversity is naturally generated, thereby providing the raw material for exploitation By
the organization. However, the very process of global exploitation reduces the degree
of diversity—replacing ideas with what are considered to be superior ones—so that
eventually improvements in organizational performance disappear. 37

The second issue is how the global exploitation of local knowledge gets carried sut
in the organization. We've considered exploitation being done under centralization @or
example, the top-down mandate of a superior practice) as well as decentralization4ffor
example, agents share information and individually decide on whether to adopt an idea).
March (1991)onsiders a particular form of decentralized learning in which the agents
learn from organizational norms—-“accepted wisdom” as to the proper way in whichto
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do things—but where the norms themselves evolve as they are shaped by the behavior
of the more successful agents within the organization. The coevolutionary dynamics
between organizational norms and agent behavior drive performance by influencing the
extent of diversity in the population and, therefore, the delicate balance between explo-

ration and exploitation. 5
6
5.2.1. March (1991) 7
8
Consider an organization facing an external reality that takes valuegfrar} onm 9

dimensions. The external reality is known only to the modeler and is assumed to be figed
for the initial set of analyses. The organization haagents who in each period hold 11
beliefs about the external reality. Agents’ beliefs on each dimension lfe-in0, 1} 12
as does the organizational norm (or code). These beliefs coevolve and only indireetly
connect to external reality. In any period, if the code is 0 for a particular dimensian,
then agents do not modify their beliefs about that dimension. It is as if the code ks
nothing to prescribe for that dimension. If instead the codelioor 1 and differs from 16
an agent’s belief, then the belief of that agent switches with probalpityy what the 17
code dictates. It is natural to interpret as a measure of socialization since it controlgs
the degree to which an agent is influenced by organizational norms. As agents learn
from the code, the code itself evolves to conform to the beliefs of those agents wiose
beliefs are closer to external reality than that of the code. To be specific, if the cede
differs from the majority view of those agents whose beliefs (over all dimensions) atre
closer to reality, then the code remains unchanged with probatility p>)* wherek 23
is the difference between the number of agents whose beliefs differ from the code &nd
the number with the same beligf, then controls how effectively the code responds tes
the beliefs of the “best” agents. 26
The performance of the organization is measured by two levels of knowledge: the
accuracy of the organizational code (which is the proportion of the organizational cetle
that matches reality) and the average accuracy of the organization’s members (wiich
is the average proportion of individual beliefs that match reality). As agents and the
code influence each other, they converge over time. An equilibrium is reached whersthe
organizational code and the individuals share common beliefs over diinensions. 32
At that point, no further learning is possible though these beliefs need not match up with
external reality. 34
Given the mutual learning dynamics between an organization’s members andsits
norms, slower socialization (that is, a lower value gy enhances the equilibrium level 3s
of knowledge. Furthermore, there is an interesting interaction between socialization
and the adaptivity of the organizational code (as measureg,hyWhen socializa- 38
tion is slow, an increase in code adaptivity raises the average level of knowledge; wien
socialization is fast, a more adaptive code reduces knowledge. The equilibrium knawl-
edge level is maximized when norms respond quickly and the population is comprised
of slow-adjusting agents. The key to understanding these results is to recognize iom
where the raw material for learning is coming. In that agents and the organizational
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code learn from each other to the extent that their beliefs differ, what drives mutual
learning issustained diversity in beliefs. Rapid socialization causes agents’ beliefs to
converge to the organizational code before the code has been able to match the beliefs
of the agents whose beliefs are most accurate. In contrast, slow socialization coupled
with a rapidly learning code maintains a sufficient amount of diversity in the population
during the code’s adaptation. This augments the spreading of correct beliefs throughout
the organization, with these correct beliefs ultimately becoming embedded in the cade.

Just as diversity of beliefs is conducive to knowledge accumulation, so is heterogene-
ity in learning rates among agents. For the same average rate of learning, a mix offfast
and slow learners leads to more aggregate knowledge than a homogeneous groupThe
slow learners provide the raw material that the organization needs to adapt in the lang
run, while the fast learners take advantage of the code capitalizing on this diversity; they
perform the exploitation function. Providing a dilemma for organizations, the indivie®
ual performance of slow learners is worse than that of fast learners, as reflected in4he
inaccuracy of their beliefs, which means that fast learning can be good for the agentbut
bad for the organization. 16

A similar set of forces comes into play when personnel turnover and environmen-
tal turbulence are introduced. Suppose that, in each period, an agent is replaced#vith
probability p3 by a new agent with a fresh set of beliefs. When socialization is slow,
an increase ip3 decreases the average level of knowledge as these new agents reptace
accurate beliefs with randomly selected ones. However, when socialization is rapid,
long-run knowledge is maximized with a moderate rate of personnel turnover as it serves
to introduce diverse beliefs and thus to prevent premature fixation on homogeneouszgbut
incorrect) beliefs. The impact of environmental turbulence is examined by stochastically
shifting external reality. If the rate of environmental change is such that the population
reaches an equilibrium before effectively responding to the turbulence, organizatienal
performance tends to degrade as the homogeneous population lacks the raw mateeial to
respond to a changing reality. Once again, personnel turnover can enhance knowledge
by injecting new beliefs into the organization. 29

In evaluating this model, it clearly lacks the richness of structure of the previous med-
els reviewed. Learning is occurring in an unstructured a space, thus the model doestnot
deliver the type of insight obtained when there is the additional structure of a landscape.
Also, the focus on beliefs without an explicit specification of how they map into pes-
formance omits an essential step in the norm-formation process. All these weaknesses
aside, the paper makes a singular contribution in providing a plausible and parsimonieus
feedback mechanism for the determination of organizational norms. 36

37

5.3. Growing an organization 38
39

If you don't zero in on bureaucracy every so often, you will naturally build in 40
layers. You never set out to add bureaucracy. You just g@dvid Glass, CEO of 41
Wal-Mart, quoted in Sam Walton with John Hu&am Walton: Made in America 42
1992, p. 233. 43
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Thus far, the primary approach to studying organizational structure has been totex-
ogenously specify various structures—in terms of the communication network andzhe
allocation of information and decision-making—and to compare their performange.
While these models are bottom-up to the extent that organizational behavior is the pfod-
uct of the interactions of individual agents’ acting according to their decision rules, they
are top-down in terms of organizational structure, as it is pre-specified by the modeler.
Though organizational structure is endogenized in such woRaakey and Svoboda 7
(1996) DeCanio et al. (2000)Miller (2001), and Ethiraj and Levinthal (2002)this 8
is done by specifying a super-agent process as reflected in, for example, applying a
genetic algorithm on a population of organizations. It fails to produce organizatiomal
structure from the bottom-up by having it be the product of the decisions of indi-
vidual agents within the organization. This all-important task—using the bottom-tp
approach of agent-based models to generate the structure of an organization—igsini-
tially attempted irEpstein (2003)Though, as we’'ll later argue, the model has features
running counter to real organizations, it is a novel and thought-provoking initial sahfo
on this challenging fundamental problem. 16

17

5.3.1. Epstein (2003) 18
19

In this model, individual agents in the organization endogenously generate inteenal
hierarchy in response to their environment. The environment for the organizationtis
represented by a flow of “opportunities” that are met by the available pool of latrer
(agents). The central organizational problem is how to allocate the fixed pool of lakor
within the organization so as to most effectively respond to these opportunities. 24

The type of task faced by the organization is visually summarizé&dgare 6 There 25
is a fixed numbev of sites (whereN = 8 in Figure 9, each of which may receive 26
a profit opportunity. One might imagine a site corresponds to a geographic or prodact
market and an opportunity is demand to be met. The baseline organization consists of
a fixed number of workers and level-1 managers. Each worker is assigned to a maeket
site and the organization earns profit when a worker is at a site when it receivesoan
opportunity. Using Epstein’s colorful terminology, a worker “intercepts” an opportunity
if present when one arrives and a “penetration” occurs when an opportunity arrises
without a worker there to intercept it. Iigure § the firm has five workers who are 33
positioned at sites 1, 3, 4, 7, and 8 and there are four level-1 managers, each beigg in
charge of two adjacent sites. Opportunities are coming into sites 1, 2, 4, 5, 6, and 7 with
the workers at sites 1, 4, and 7 positioned to intercept. The opportunities coming rto
sites 2, 5, and 6, on the other hand, are wasted and represent penetrations. Finallg, the
workers at sites 3 and 8 are idle for lack of opportunities. Penetrations and idle workers
are monitored by level-1 managers. For instance, the level-1 manager in charge of sites 1
and 2 recognizes the need for a worker to meet the opportunity at site 2. Concurresly,
the level-1 manager in charge of sites 3 and 4 recognizes that the worker at site43 is
underutilized. Clearly, an appropriate move for the organization is to shift the worker
from site 3 to site 2. 43
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Figure 6. Epstein’s essential problem.
22

The organizational problem in this model is to efficiently allocate its workforce. Hovié
ever, workers cannot, by themselves, move among sites but may be reallocated by upper
management. Epstein considers two approaches to solve the allocation problem, thgugh
only the hierarchy approach will concern us h&tdhis approach has managers cres,
ating higher level managers to solve the allocation problem. In the example abovg, a
level-1 manager would “activate” a level-2 manager who would be in control of the
four sites (two sites each from the two subordinate managers) and thus have the cgpac-
ity to move workers among those sites. For instance, the level-1 manager controlling
sites 1 and 2 can activate a level-2 manager who has control over sites 1 through 4 and
who can thus observe and respond to the excess demand at site 2 and the excess sppply
at site 3. Being in charge of sites 1 through 4, he has the authority to shift the workey,in
site 3 to site 2 and balance the demand and supply of the workers for the sites thaf.are
under his control. a6

A manager’s decision rule for activating an upper level manager is defined by thyee
parameters: two penetration threshold values, deriigdandTmax, and a finite mem-
ory of lengthm. Given the number of penetrations recorded in their memory, a level;

40

. — . . . . . 41
30 Indeed, the primary objective of the paper is to characterize the optimal solution—hierarchy or a trade
mechanism—and how it depends on the organization’s objective. Our interest is more in terms of it % a
modelling approach to endogenizing hierarchies. 43
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manager computes the average number of penetrations per perioder the 2 mar- 1

ket sites he controls. IP > Tyax then, with some upward inertia, a manager of leved

k + 1 is created. IfP < Tpyin then, with some downward inertia, the manager cedes
authority to managers at levél— 1. This inertia captures the reluctance of a mant
ager to relinquish control. There is no change in the current hierarchical structure when
Tmin < P < Tmax The threshold values can vary across levels, though they are spéci-
fied to be the same within a managerial level. Given a pattern of opportunities arriving
at these sites over time, the baseline organization can endogenously grow its h|erérchy
to as many as logV levels.

Suppose the flow of opportunities is continual and concentrated on a set of sites%or
which there are, initially, no workers. The hierarchy mechanism creates additional nfan-
agerial layers to handle this misallocation as long as the penetration thresholds anéfthe
upward inertia parameter are set sufficiently low. The emergent hierarchy, even after
the workers have been properly allocated to effectively intercept all incoming opportt-
nities, tends to remain in place when the downward inertia of the top managerial lével
is sufficiently high. When downward inertia is instead low at all management laye's,
then the generated hierarchy quickly dissolves after successfully reallocating labor. The
flexibility with which the organization restructures itself internally—both to effectively?
reallocate labor and then to dismantle itself when no longer needed—depends on th€ in-
ertia embedded in agents’ decision rules as well as the thresholds for inducing a ché‘hge
in structure.

As a theory of organizational structurgpstein (2003)pffers a rich and novel ap- 2
proach to organizations but it has a critical feature which runs counter to our undér—
standing of real organizatiod$.In this model, managerial layers emerge from below?*
as managers create levels above them to coordinate the behavior of what were origifrally
independent divisions. To begin, in most organizations (such as corporations and (f:fov-
ernments), there is always a manager at the top who, at least in principle, can reallé¢ate
resources as desired. More importantly, managers only have authority over reorganffing
what lies beneath them in the hierarchy so that, as a result, new managerial Iayers are
created from above. A commonly purported motivation for adding middle level man-
agers is that upper managers perceive themselves as overburdened and thus dlsﬁrlbute
tasks and authority to newly created managerial levels. In Epstein’s model, organlza-
tional structure is created in a direction running counter to reality.

In spite of this weaknesgpstein (2003)s a provocative study. Epstein lays down
an important issue for future research—to model the internal organizational pressures
that create a need for a new organizational structure and the process by which chg:mge
is realized. This would represent the acme of agent-based models of orgamzauorgs it
closes the circle in that an organization can re-invent itself through the decisions of ﬁ1e

organization’s members. 20

41
42

31 fairness Epstein (2003}tates that the model is not intended to represent any existing organization. 43
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6. Critique of the past and directionsfor the future 1

2

You don’t want to learn a science in its early stagesYou have to thinkabout. . . 3

your mind as a resource to conserve, and if you fill it up with infantile garbage*

it might cost you something later. There might be right theories that you will be®
unable to understand five years later because you have so many misconceptiofs.

You have to form the habit of not wanting to have been right for very long. If I still 7

believe something after five years, | doubt Mdrvin Minsky quoted in Stewart @

Brand,The Media Lab: Inventing the Future at M.1.T. (1987), pp. 103—-10%. °

10
Recent research in the computational agent-based literature has provided a new,and

fresh perspective to exploring organizations. There is real promise that theory can pro-
duce precise results while encompassing the rich institutional features of corporatigns,
governments, political parties, and other organizations. But if we are to effectively tra-
verse the learning curve associated with this new modelling approach, we must maintain
a healthy level of skepticism. Research builds its own momentum as assumptions;ini-
tially considered problematic are routinized, arbitrary modelling conveniences became
entrenched and leave unexplored the sensitivity of results to them, and standardss for
acceptable work form when methods are rudimentanMasch (1991 discovered, sta- 1o
bility during an intense learning phrase can be quite deleterious. We are at such a pgint
and it is wise that we be on guard against acquiring bad habits. Towards this end, we'll
make three methodological points in this section and conclude with a few suggested
directions for research. 23
The first point is that, while there is always a disconnect between our models and
what they are intended to represent, this can be a more serious issue with computatienal
agent-based models. This concern does not come from modelling simplicity—indeed,
the models are quite rich compared to their predecessors—but rather that insffi-
cient attention may be given to relating a model to reality. Many of the modelling
components—artificial neural networks, simulated annealing, genetic algorithms, and
the like—were originally developed for very different purposes and some work has
used them without adequately explaining how these theoretical constructs map into
real-world entities and processes. For example, what is the correspondence beteeen
the components of an artificial neural network and the components of a firm? Is it &p-
propriate to interpret a node as a person? If not, what additional structure would make
a node a reasonable representation of a person? What is the correspondence between a
genetic algorithm and the process of imitation and innovation conducted within and dse-
tween organizations? Is crossover a descriptively accurate model of some organizatinal
process? Before “off-the-shelf” modules are deployed in modelling organizations, the
researcher should map it to what is being modelled. Doing so will not only lead to meye
confidence in the model but is likely to suggest useful modifications. 40
One of the reasons that neoclassical economists resist bounded rationality is that there
are so many ways to model it, and often which is selected is arbitrary. This is a legti-
mate concern, although it should not deter one from engaging in such work. Indeedsthe
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equilibrium assumption—an agent “understands” the world around him in the sense of,
for example, knowing the behavioral rules used by other agents—ad lasc as most 2
assumptions of boundedly rational agents in that, in most instances, it is not base# on
empirical evidence and often no credible story can be told to make the assumption ¢on-
vincing. (The appeal of the equilibrium assumption is not its empirical validity but rathrer
its power in generating precise results and its accordance with the faith of many neoelas-
sical economists in equilibrating processes.) This leads to our second point. Given there
are many ways in which to model bounded rationality, a feature to the broad research
program should be assessing the robustness of insight to the particular way bounded
rationality is instantiated in agents and how the tasks facing agents are represented. In
finding a solution, does it make a difference whether an organization is modelled astan
artificial neural network or as a collection of myopic hill-climbing agents? Do results
depend on the organization solving a decomposable problem or a binary classification
problem or minimizing a distance function? Does it make a difference whether organi-
zational structure evolves as represented by simulated annealing or a genetic algorithm?
Rather than consider one particular task, it may be more useful to allow for a varisty
of tasks, exploring how the optimal organizational structure depends on the task &nd
identifying those structures that perform reasonably well for an assortment of tasks:s
The third point to make about this literature is that results can be inadequately ©x-
plained. This is partly due to models being too complex and researchers forgetting 2hat
parsimony is a virtue, not a weakness emanating from a lack of computing power.2in-
deed, the poignancy of Einstein’s well-known apothegm—"Everything should be 2as
simple as possible, but not simpler."—is nowhere greater than with agent-based corepu-
tational modelling®? As the power of computing allows us to solve models of increasireg
complexity, there is a natural tendency to complicate. This is a mistake. Even with
Moore’s Law sailing at full mast, computing constraints continue to make our modeds
gross simplifications of what we are trying to understand. The deliverable of formaal
models remains what it has always been—insight. A model that is so complex thatsdts
implications elude explanation is a model that has not altered our underst&fding. 2e
Complexity aside, a more disturbing feature of this work is the sometimes perceived
lack of necessity to carefully explain results. An attractive feature of a mathematioal
proof is that it provides a paper trail that can be used to explain results. Though conspu-
tational results are also the product of logical operations, there is a tendency to thinkhat
if the model cannot be solved analytically then there is little point to trying to carefully
sort out how output is produced. Anyone who has worked with computational models

knows that results can be the product of arbitrary assumptions of convenience or coghing
37
38
32 |ndeed, some work in the computational agent-based literature seems to be guided by the axiom: “Make it
simple enough to be computable and complex enough to be incomprehensible.”
33 Itis in this light that we decry “emergent phenomena” when it is meant to refer to results unant|0|patable
by virtue of a model’s complexity. If one could not, upon proper reflection, anticipate the possibility of some
results then it is hard to see how one eapost explain them and, if one cannot explain them, in what sensé?
do we understand more. 43
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errors, which makes it all the more critical that they be adequately explained. Though
computational work may not leave an analogous paper trail, it can offer a way in which
to “test” an explanation. If one conjectures that a result is due to a particular force, then
it may be possible to “turn off” that force. If the result persists then one’s conjecturetis
wrong; if the result goes away then the “evidence” is consistent with that explanation.
Furthermore, explanation is not only essential to gaining insight but also to assessing
robustness. Convincingly arguing that the forces driving the results are not peculiat to
those examples is the way in which to develop confidence that the insight uncovered is
broadly applicable. The bottom line is that researchers must apply the same standards
for explaining results that are used in the assumption-proof-theorem tratfition. 10
Given research on organizations using a computational agent-based approachis in
its incipiency, there are multitudes of research directions. Rather than propose &pe-
cific lines, which would only serve to scratch the surface and deplete what minusdéle
scholarly wealth the authors possess, let us instead provide three general directioris for
research. 15
One direction is to take bounded rationality another step further. While agents %re
modelled as being limited in their decision-making capacity, they are often assurtied
to have an unrealistic amount of information, either before or after acting. A commién
assumption in rugged landscape models is that an agent obsgraete the true per- 19
formance associated with an idea and, based on that information, decides wheth&r or
not to adopt it. In some cases, this can be plausibly motivated by imagining that zhe
idea is temporarily implemented with (noiseless) performance being observed. Le&n-
ing is then occurring offline. If, however, there is noise, then learning will have to occéar
in real time—an organization may need to continue the experiment for a non-trivial
length of time in order to get a sufficiently informative signal. Before even experimeft-
ing with an idea, it will want to make an assessment of its potential but then the agént
must have a “model” so as to make such a judgment. That is a feature lacking in riost
agent-based model§évetti and Levinthal, 20Q®eing an exception). Depending on28
how one models the evolution of an agent’s model of the landscape, biased and nogjust
noisy evaluations could emerge. 30
An analogously strong assumption is made in many information-processing mod&ls,
which is that agents leamx post what was the true state; an organization receives daf4,
makes a choice, observes the outcome, and is able to infer from the outcome what wiguld
have been the right choice. In practice, the true state is rarely observed and, while¥er-
formance may be observed, it provides noisy information regarding what would h&ve
been the best decision. In addition, when there are more than a few members, or§ani-
zational performance is a highly uninformative signal of what an agent outside of the
upper-most levels should have done. Agents need to know about their “local” perfér-

mance rather than the global performance of the organization. Models have to céme
40

41

34 This comment was distinctly improved by a stimulating dinner conversation between one of the autfdrs
and Patrick Rey in Siena, Italy. 43



© 0 N oo g b~ W N P

A B BB WOWWW W W W W WWN DN NDNNNDNDNDNDN R R P RP RBP PR R R
W N P O © 0 N O 0o b WN PP O © © N O g b~ WOWN P O © 0 N o o b W N B O

1334 M.-H. Chang and J.E. Harrington, Jr.

to grips with how an organization measures an individual agent’s contribution to total
performance. 2

A second direction is to bring in more structure. Thus far, models have been too
generic. The results generated by models of search and learning are extensions @r ap-
plications of insight regarding search on rugged landscapes. If we're to move beyond
that, we need to impose more structure so that a variable is not some faceless dimen-
sion but concretely corresponds to an actual practice. This would allow one to explore
not only how many dimensions should be centralized butwtsch dimensions should 8
be centralized. What determines whether, say, marketing is controlled by the corpcdrate
office or a product manager? What determines which dimensions a store manager*€on-
trols rather than assistant managers? An important step is to further pursue the app#dach
of building a landscape from economic primitives by modelling specific functions1z
pricing, product selection, training practices, marketing, inventory policy, etc. Such'an
approach could open up an entirely new set of questions and make these models Hore
powerful both in explaining organizational behavior and serving a normative role #8r
organizations. 16

More structure is also needed in information processing models where, thus ¥ar,
agents are excessively simple-minded and too heavily “programmed,” even by the sfan-
dards of the computational agent-based literature. Endowing them with preferences‘and
giving them choices—such as how much effort to exert and what information to p&ss
onto the next node in the network—is vital for the distance between models and regfity
to lessen. 2

At present, organization theory is partitioned into the neoclassical economics &p-
proach and the agent-based computational approach and “ne’er the twain shall méet.”
It is obvious that these two research lines should not be moving independently. Edch
has its virtues—computational work provides a rich modelling of organizational strié-
ture and how agents interact while neoclassical work is sophisticated in its modelfihg
of incentives—and a superior theory of organizations is to be had if the two can®be

integrated. This challenge is the third direction. 29
30

31
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