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1 Appendix A: Proofs

In reading the proofs, it is useful to have this summary of the solution algorithm for
deriving an equilibrium.

1. Given σ and Y and for each η, solve for the maximum market condition (or
threshold) for which the ICC is satisfied, φ (Y, σ, η).

2. Given σ and for each η, solve for the equilibrium collusive value Y ∗ (σ, η) which
is a solution to the fixed point problem: Y ∗ = ψ (Y ∗, σ, η) . If there are multi-
ple fixed points, select the maximum. Given Y ∗ (σ, η), define the equilibrium
threshold φ∗ (σ, η) .

3. Given σ and φ∗ (σ, η) , derive the stationary proportion of type-η industries that
are cartels, C (σ, η) , and integrate over industry types to derive the stationary
cartel rate:

C (σ) =

∫ η

η
C (σ, η) g (η) dη =

∫ η

η

(
κ (1− σ)H (φ∗ (σ, η))

1− (1− κ) (1− σ)H (φ∗ (σ, η))

)
g (η) dη

4. Solve for the equilibrium probability of paying penalties through non-leniency
enforcement σ∗ which is a solution to the fixed point problem: σ∗ = Ψ (σ∗) .
If there are multiple fixed points, select the maximum. The equilibrium cartel
rate is C (σ∗).
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Proof of Theorem 2. The proof has three steps. First, holding Y fixed,
the threshold for stable collusion is shown to be lower with a leniency program:
φNL (Y, η) > φθ (Y, η). When σ > θ, which holds by supposition, the deviator
has lower penalties by applying for leniency and this tightens the ICC and thus
raises the threshold. Second, given φNL (Y, η) > φθ (Y, η) and the supposition that
ω > σ, it is shown that ψNL (Y, σ, η) ≥ ψθ (Y, σ, η). That the collusive value func-
tion is weakly lower with a leniency program is due to two effects: i) φNL (Y, η) >
φθ (Y, η) results in weakly shorter cartel duration with a leniency program; and
ii) when there is a leniency program, expected penalties upon cartel collapse are
ωγ (Y − αµ) rather than σγ (Y − αµ), and the former are higher when ω > σ. Third,
ψNL (Y, σ, η) > ψθ (Y, σ, η) implies a weakly lower fixed point with a leniency pro-
gram - Y ∗NL (σ, η) ≥ Y ∗θ (σ, η) - and, therefore, a weakly lower equilibrium threshold:
φ∗NL (σ, η) ≥ φ∗θ (σ, η). This proves the cartel rate is no higher with a leniency pro-
gram. If, in addition, assumption A1 holds then φ∗NL (σ, η) > φ∗θ (σ, η) for a positive
measure of values for η. From this result, one can then conclude that, holding σ
fixed, the cartel rate is strictly lower with a leniency program.

Holding Y fixed, the threshold function for stable collusion is lower with a leniency
program:

φNL (Y, σ, η)− φθ (Y, σ, η) (1)

=
δ (1− σ) (1− κ) (Y − αµ)

(η − 1) [1− δ (1− κ)]

−
(
δ (1− σ) (1− κ) (Y − αµ)− [1− δ (1− κ)] [σ −min {σ, θ}] γ (Y − αµ)

(η − 1) [1− δ (1− κ)]

)
=

(σ − θ) γ (Y − αµ)

η − 1
> 0

because σ > θ. Using φNL (Y, η) > φθ (Y, η),

ψNL (Y, σ, η)− ψθ (Y, σ, η)

=

∫ φNL(Y,σ,η)

π
{(1− δ)π + δ [(1− σ)Y + σW ]− (1− δ)σγ (Y − αµ)}h (π) dπ

+

∫ π

φNL(Y,σ,η)
[(1− δ)απ + δW − (1− δ)σγ (Y − αµ)]h (π) dπ

−
∫ φθ(Y,σ,η)

π
{(1− δ)π + δ [(1− σ)Y + σW ]− (1− δ)σγ (Y − αµ)}h (π) dπ

−
∫ π

φθ(Y,σ,η)
[(1− δ)απ + δW − ωγ (Y − αµ)]h (π) dπ
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and a few manipulations yields

ψNL (Y, σ, η)− ψθ (Y, σ, η) (2)

=

∫ φNL(Y,σ,η)

φθ(Y,σ,η)
[(1− δ) (1− α)π + δ (1− σ) (Y −W )]h (π) dπ

+

∫ π

φθ(Y,σ,η)
(1− δ) (ω − σ) γ (Y − αµ)h (π) dπ.

Given ω > σ, (2) is non-negative. If π ≥ φNL (Y, σ, η) (> φθ (Y, σ, η)) or (φNL (Y, σ, η) >)
φθ (Y, σ, η) ≥ π then the first of the two terms in (2) is zero; otherwise, it is positive.
If φθ (Y, σ, η) ≥ π then the second term is zero; otherwise, it is positive.

Since it has just been shown that ψNL (Y, σ, η) ≥ ψθ (Y, σ, η) then Y ∗NL (σ, η) ≥
Y ∗θ (σ, η) . Given

φ∗ (σ, η) ≡ max {min {φ (Y ∗ (σ, η) , σ, η) , π} , π} ,

it follows that φ∗NL (σ, η) ≥ φ∗θ (σ, η).
Next we want to show: if assumption A1 holds then φ∗NL (σ, η) > φ∗θ (σ, η) for

a positive measure of values for η. If φ∗NL (σ, η) < π then either φ∗NL (σ, η) > π -
so that φ∗NL (σ, η) ∈ (π, π) - or φ∗NL (σ, η) = π; and if φ∗NL (σ, η) > π then either
φ∗NL (σ, η) < π - so that φ∗NL (σ, η) ∈ (π, π) - or φ∗NL (σ, η) = π. This results in
two mutually exclusive cases: 1) there is a positive measure of values for η such that
φ∗NL (σ, η) ∈ (π, π) ; and 2) there is not a positive measure of values for η such that
φ∗NL (σ, η) ∈ (π, π) in which case there is a positive measure of values for η such that
φ∗NL (σ, η) = π and a positive measure of values for η such that φ∗NL (σ, η) = π.

In considering case (1), first note that

φ∗NL (σ, η) = φ (Y ∗NL (σ, η) , σ, η) > φθ (Y ∗NL (σ, η) , σ, η) ≥ φθ (Y ∗θ (σ, η) , σ, η) , (3)

where the equality follows from φ∗NL (σ, η) ∈ (π, π) , the strict inequality follows
from φNL (Y, σ, η) > φθ (Y, σ, η) , and the weak inequality follows from Y ∗NL (σ, η) ≥
Y ∗θ (σ, η). (3) implies π > φθ (Y ∗θ (σ, η) , σ, η) and, therefore,

φ∗θ (σ, η) = max {φθ (Y ∗θ (σ, η) , σ, η) , π} . (4)

(3)-(4) allow us to conclude: φ∗NL (σ, η) > φ∗θ (σ, η). Hence, for case (1), there is a
positive measure of values for η for which φ∗NL (σ, η) > φ∗θ (σ, η) . Under case (2), that
φ∗NL (σ, η) is weakly decreasing in (proof available on request) implies ∃η̂NL ∈

(
η, η
)

such that

φ∗NL (σ, η) =

{
π if η ∈

[
η, η̂NL

]
π if η ∈ (η̂NL, η]

. (5)

Note that, at the critical value η̂NL,

ψNL (Y, σ, η̂NL) ≤ Y, ∀Y ∈ [αµ, µ] , (6)

for suppose not. Then ∃Y ′ ∈ (αµ, µ) such that ψNL (Y ′, σ, η̂NL) > Y ′ . By the
continuity of ψNL in η, ∃ξ > 0 such that ψNL (Y ′, σ, η̂NL + ξ) > Y ′ which implies
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Y ∗NL (σ, η̂NL + ξ) > αµ and φ∗NL (σ, η̂NL + ξ) > π, but that contradicts (5). With (6)
and ψNL (Y, σ, η) > ψθ (Y, σ, η), it follows ∃χ > 0 such that ψθ (Y, σ, η̂NL) < Y − χ
∀Y ∈ [αµ, µ] which implies, by the continuity of ψθ in η, ∃η̂θ < η̂NL such that
φ∗θ (σ, η) = π iff η > η̂θ. We then have that there is a positive measure of values of η
- specifically, η ∈ [η̂NL, η̂θ) - for which

φ∗NL (σ, η) = π > π = φ∗θ (σ, η) .

This concludes the proof that: if assumption A1 holds then φ∗NL (σ, η) > φ∗θ (σ, η) for
positive measure of values for η.

Whether with or without a leniency program, if the threshold for a type-η industry
is φ̃ (σ, η) then the cartel rate is∫ η

η

 κ (1− σ)H
(
φ̃ (σ, η)

)
1− (1− κ) (1− σ)H

(
φ̃ (σ, η)

)
 g (η) dη. (7)

Note that the cartel rate is increasing in φ̃ (σ, η). Given it has been shown φ∗NL (σ, η) ≥
φ∗θ (σ, η) ∀η, (7) implies CNL (σ) ≥ Cθ (σ) . It has also been shown that: if there is a
positive measure of values of η such that φ∗NL (σ, η) < π and a positive measure of
values for η such that φ∗NL (σ, η) > π then there is a positive measure of values of η
such that φ∗NL (σ, η) > φ∗θ (σ, η) and, therefore,

κ (1− σ)H (φ∗NL (σ, η))

1− (1− κ) (1− σ)H (φ∗NL (σ, η))
>

κ (1− σ)H (φ∗θ (σ, η))

1− (1− κ) (1− σ)H (φ∗θ (σ, η))
. (8)

As (8) holds for a positive measure of values of η, (7) implies CNL (σ) > Cθ (σ) .

The existence of a fixed point to Ψ : [0, 1]→ [0, 1] is not immediate because there
are two possible sources of discontinuity. Recall that φ∗ (σ, η) depends on Y ∗ (σ, η)
which is the maximal fixed point to: Y = ψ (Y, σ, η). Because of multiple fixed points
to ψ (Y, σ, η) , Y ∗ (σ, η) need not be continuous in σ and if Y ∗ (σ, η) is discontinuous
then φ∗ (σ, η) is discontinuous which implies H (φ∗ (σ, η)) and C (σ, η) from (12) in
the paper are discontinuous. However, it is proven in Theorem 3 that these possible
discontinuities in the integrand of Ψ do not create discontinuities in Ψ. The second
possible source of discontinuity in Ψ is due to a discontinuity in expected penalties at
σ = θ. That discontinuity is present as long as θ ∈ (0, 1) and, as a result, existence
is established only when there is no leniency (θ = 1) and full leniency (θ = 0).

Proof of Theorem 3. When θ = 1 then

Ψ (σ) = qrp

(
qr

∫ η

η
C (σ, η) g (η) dη

)
, (9)

and when θ = 0 then

Ψ (σ) = qrp

(
λ

∫ η

η
(1−H (φ∗ (σ, η)))C (σ, η) g (η) dη (10)

+qr

∫ η

η
H (φ∗ (σ, η))C (σ, η) g (η) dη

)
.
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To show that a fixed point exists for (9) and for (10), the proof strategy has two
steps: 1) show that, for any value of σ, the integrand in these equations is continuous
in σ except for a countable set of values of η; and 2) show that it follows from step
1 that Ψ is continuous. The proof will focus exclusively on proving that (10) has a
fixed point as the method of proof is immediately applicable to the case of (9).1

Considering the integrand in (10), a discontinuity in

H (φ∗ (σ, η))C (σ, η) g (η) = H (φ∗ (σ, η))

(
κ (1− σ)H (φ∗ (σ, η))

1− (1− κ) (1− σ)H (φ∗ (σ, η))

)
g (η)

with respect to σ (or η) comes from φ∗ (σ, η) being discontinuous, which comes from
Y ∗ (σ, η) being discontinuous. Let ∆ (σ′) ⊆

[
η, η
]
be the set of η for which Y ∗ (σ, η)

is discontinuous at σ = σ′. We will show that ∆ (σ) is countable.
Suppose Y ∗ (σ, η) is discontinuous in σ at (σ, η) = (σ′, η′) . Given ψ (Y, σ, η) is

continuous and Y ∗ (σ, η) is the maximal fixed point to ψ (Y, σ, η) then

ψ
(
Y, σ′, η′

)
< Y, ∀Y ∈

(
Y ∗
(
σ′, η′

)
, µ
]
. (11)

If, in addition, ∃ξ > 0 such that

ψ
(
Y, σ′, η′

)
> Y, ∀Y ∈

[
Y ∗
(
σ′, η′

)
− ξ, Y ∗

(
σ′, η′

))
then, by the continuity of ψ (Y, σ, η) in σ, Y ∗ (σ, η) is continuous at (σ, η) = (σ′, η′) ,
contrary to our supposition. Hence, it must be the case that ∃ξ > 0 such that

ψ
(
Y, σ′, η′

)
≤ Y, ∀Y ∈

[
Y ∗
(
σ′, η′

)
− ξ, Y ∗

(
σ′, η′

)]
. (12)

Given that ψ (Y, σ, η) is continuous and decreasing in η (proof available on request)
then (11) and (12) imply

ψ
(
Y, σ′, η′

)
< Y, ∀Y ∈

[
Y ∗
(
σ′, η′

)
− ξ, µ

]
, ∀η > η′. (13)

It follows from (13) that, ∀η > η′, all fixed points to ψ are bounded above by
Y ∗ (σ′, η′)− ξ :

Y ∗
(
σ′, η

)
< Y ∗

(
σ′, η′

)
− ξ, ∀η > η′.

Next define:
ε
(
σ′, η′

)
≡ Y ∗

(
σ′, η′

)
− lim
η↓η′

Y ∗
(
σ′, η

)
where ε (σ′, η′) measures the size of the discontinuity in Y ∗ (σ′, η) with respect to η
at η = η′.

For each η ∈ ∆ (σ′), there has then been associated an interval of length ε (σ′, η).
Note that these intervals have a null intersection because Y ∗ (σ, η) is non-increasing
in η. Hence, ∑

η∈∆(σ′)

ε
(
σ′, η

)
≤ (1− α)µ.

1When θ = 1, existence of a fixed point can also be established by showing that Ψ (σ) is non-
decreasing in σ and appealing to Tarski’s Fixed Point Theorem. However, when θ < 1, it is generally
not true that Ψ (σ) is non-decreasing in σ ∀σ.
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Given that a sum can only be finite if the number of elements which are positive is
countable, it follows that ∆ (σ′) is countable. Hence, the set of values for η for which
Y ∗ (σ′, η) is discontinuous in σ at σ = σ′ is countable. This completes the first step.

By Jeffrey (1925), given thatH (φ∗ (σ, η))C (σ, η) g (η) and (1−H (φ∗ (σ, η)))C (σ, η) g (η)
are bounded in (σ, η) on [0, 1]×

[
η, η
]
and are continuous at σ = σ′ for all η ∈

[
η, η
]

except for a countable set then∫ η

η
H (φ∗ (σ, η))C (σ, η) g (η) dη

and ∫ η

η
(1−H (φ∗ (σ, η)))C (σ, η) g (η) dη

are continuous at σ = σ′. Given that p is a continuous function, it follows that

p

(
λ

∫ η

η
(1−H (φ∗ (σ, η)))C (σ, η) g (η) dη + qr

∫ η

η
H (φ∗ (σ, η))C (σ, η) g (η) dη

)

is continuous in σ. Hence, Ψ in (10) is continuous in σ and maps [0, 1] into itself;
therefore, a fixed point exists. The same method of proof can be used to show that
a fixed point to (9) exists.

Proof of Theorem 4. The first step is to show that, as the penalty multiple γ goes
to zero, the cartel rate function is the same with and without a leniency program:

lim
γ→0

CNL (σ) = lim
γ→0

CL (σ) , ∀σ.

The second step is to show that, as γ → 0, non-leniency enforcement is weaker with
a leniency program:

lim
γ→0

σ∗NL > lim
γ→0

σ∗L.

These two results together imply that the equilibrium cartel rate with a leniency
program is higher than without a leniency program when γ ' 0.

For the first step, let us begin by considering the thresholds for stable collusion.
Without a leniency program,

φNL (Y, σ, η) =
δ (1− σ) (1− κ) (Y − αµ)

(η − 1) [1− δ (1− κ)]

and, trivially,2

lim
γ→0

φNL (Y, σ, η) =
δ (1− σ) (1− κ) (Y − αµ)

(η − 1) [1− δ (1− κ)]
.

2Recall that φNL (Y, σ, η) comes out of the ICC and is the market condition that makes a firm
indifferent between colluding and cheating. That γ does not matter is because the expected penalty
is the same whether a firm sets the collusive price or cheats and undercuts the collusive price set by
the other firms.
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With a full leniency program,

φL (Y, σ, η) =
δ (1− σ) (1− κ) (Y − αµ)− [1− δ (1− κ)]σγ (Y − αµ)

(η − 1) [1− δ (1− κ)]

and

lim
γ→0

φL (Y, σ, η) =
δ (1− σ) (1− κ) (Y − αµ)

(η − 1) [1− δ (1− κ)]
.

Hence,
lim
γ→0

φNL (Y, σ, η) = lim
γ→0

φL (Y, σ, η) . (14)

Turning to the collusive value functions, we have without a leniency program:

ψNL (Y, σ, η) =

∫ φNL(Y,σ,η)

π
[(1− δ)π + δ (1− σ)Y + δσW ]h (π) dπ

+

∫ π

φNL(Y,σ,η)
[(1− δ)απ + δW ]h (π) dπ − (1− δ)σγ (Y − αµ) ,

and with a full leniency program:

ψL (Y, σ, η) =

∫ φL(Y,σ,η)

π
[(1− δ)π + δ (1− σ)Y + δσW − (1− δ)σγ (Y − αµ)]h (π) dπ

+

∫ π

φL(Y,σ,η)
[(1− δ)απ + δW − (1− δ)ωγ (Y − αµ)]h (π) dπ.

Using (14),

lim
γ→0

ψNL (Y, σ, η) = lim
γ→0

ψL (Y, σ, η) (15)

=

∫ φNL(Y,σ,η)

π
[(1− δ)π + δ (1− σ)Y + δσW ]h (π) dπ

+

∫ π

φNL(Y,σ,η)
[(1− δ)απ + δW ]h (π) dπ.

Generically, (15) implies

lim
γ→0

Y ∗NL (σ, η) = lim
γ→0

Y ∗L (σ, η) . (16)

(It is only generic because it requires that, in an ε-ball around γ = 0, Y ∗NL (σ, η) and
Y ∗L (σ, η) are continuous in γ.) It follows from (14) and (15) that:

lim
γ→0

φ∗NL (σ, η) = lim
γ→0

φ∗L (σ, η) . (17)

Given σ, the cartel rate without and with a leniency program, respectively, is:

CNL (σ) =

∫ η

η
CNL (σ, η) g (η) dη =

∫ η

η

[
κ (1− σ)H (φ∗NL (σ, η))

1− (1− κ) (1− σ)H (φ∗NL (σ, η))

]
g (η) dη
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CL (σ) =

∫ η

η
CL (σ, η) g (η) dη =

∫ η

η

[
κ (1− σ)H (φ∗L (σ, η))

1− (1− κ) (1− σ)H (φ∗L (σ, η))

]
g (η) dη.

Using (17),
lim
γ→0

CNL (σ) = lim
γ→0

CL (σ) . (18)

To prove the second step, we want to first show that, when λ > qr and γ ' 0,

p

(
qr

∫ η

η
CNL (σ, η) g (η) dη

)
(19)

> p

(
λ

∫ η

η
(1−H (φ∗L (σ, η)))CL (σ, η) g (η) dη + qr

∫ η

η
H (φ∗L (σ, η))CL (σ, η) g (η) dη

)
.

Given p is strictly decreasing, (19) holds iff

λ

∫ η

η
(1−H (φ∗L (σ, η)))CL (σ, η) g (η) dη + qr

∫ η

η
H (φ∗L (σ, η))CL (σ, η) g (η) dη

> qr

∫ η

η
CNL (σ, η) g (η) dη

or, equivalently, ∫ η

η
(1−H (φ∗L (σ, η))) [λCL (σ, η)− qrCNL (σ, η)] g (η) dη (20)

> qr

∫ η

η
H (φ∗L (σ, η)) [CNL (σ, η)− CL (σ, η)] g (η) dη.

Given (18), (20) holds as γ → 0 iff

(λ− qr)
∫ η

η
(1−H (φ∗NL (σ, η)))CNL (σ, η) g (η) dη > 0. (21)

By the assumption in Theorem 4 (equation (13) in the paper),∫ η

η
(1−H (φ∗NL (σ, η)))CNL (σ, η) g (η) dη > 0 (22)

holds for σ = σ∗NL. Given λ > qr then (21) holds. We have shown that if λ > qr
then there exists γ̂ > 0 such that if γ ∈ [0, γ̂] then (19) holds, generically, in a small
neighborhood of σ = σ∗NL.

For when there is no leniency program, σ∗NL is defined by:

σ∗NL = qrp

(
qr

∫ η

η
CNL (σ∗NL, η) g (η) dη

)
.

8



As it is the maximal fixed point then:

σ − qrp
(
qr

∫ η

η
CNL (σ, η) g (η) dη

)
= 0 as σ = σ∗NL. (23)

Hence, using (19), it follows from (23) that there exists λ̂ < 1 and γ̂ > 0 such that if

(γ, λ) ∈ [0, γ̂]×
[
λ̂, 1
]
then ∃ε > 0 such that

σ − qrp
(
λ

∫ η

η
(1−H (φ∗L (σ, η)))CL (σ, η) g (η) dη (24)

+qr

∫ η

η
H (φ∗L (σ, η))CL (σ, η) g (η) dη

)
> 0,∀σ ≥ σ∗NL − ε.

Given the continuity of

p

(
λ

∫ η

η
(1−H (φ∗L (σ, η)))CL (σ, η) g (η) dη + qr

∫ η

η
H (φ∗L (σ, η))CL (σ, η) g (η) dη

)
in σ (see the proof of Theorem 3), (24) implies the maximal fixed point σ∗L is less
than σ∗NL − ε. Given (18) and having just shown

lim
γ→0

σ∗NL > lim
γ→0

σ∗L,

it follows that
lim
γ→0

CL (σ∗L) > lim
γ→0

CNL (σ∗NL) .

Proof of Theorem 6. Given σ∗ ∈ (0, ω) and θ = 0, by Theorem 2 we have
that CNL (σ) ≥ CL (σ) and, when there is positive measure of values for η such that
φ∗NL (σ, η) < π and a positive measure of values for η such that φ∗NL (σ, η) > π ,
CNL (σ) > CL (σ). To prove this theorem, it is then suffi cient to show σ∗L > σ∗NL.

σ∗NL and σ
∗
L are defined by:

σ∗NL = qrp

(
qr

∫ η

η
CNL (σ∗NL, η) g (η) dη

)
where

CNL (σ, η) =
κ (1− σ)H (φ∗NL (σ, η))

1− (1− κ) (1− σ)H (φ∗NL (σ, η))
,

and

σ∗L = p

(
λ

∫ η

η
(1−H (φ∗L (σ∗L, η)))CL (σ∗L, η) g (η) dη

+qr

∫ η

η
H (φ∗L (σ∗L, η))CL (σ∗L, η) g (η) dη

)
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where

CL (σ, η) =
κ (1− σ)H (φ∗L (σ, η))

1− (1− κ) (1− σ)H (φ∗L (σ, η))
.

If φ∗NL (σ, η) > (=)φ∗L (σ, η) then

H (φ∗NL (σ, η)) > (=)H (φ∗L (σ, η))

and
CNL (σ, η) > (=)CL (σ, η) ,

in which case,

H (φ∗NL (σ, η))CNL (σ, η) > (=)H (φ∗L (σ, η))CL (σ, η) .

It is immediate that if

H (φ∗NL (σ, η))CNL (σ, η) ≥ H (φ∗L (σ, η))CL (σ, η) , ∀η (25)

and

H (φ∗NL (σ, η))CNL (σ, η) > H (φ∗L (σ, η))CL (σ, η) , for positive measure of η (26)

then∫ η

η
H (φ∗NL (σ, η))CNL (σ, η) g (η) dη >

∫ η

η
H (φ∗L (σ, η))CL (σ, η) g (η) dη. (27)

(25) is always true and (26) is true when there is positive measure of values for η such
that φ∗NL (σ, η) < π and a positive measure of values for η such that φ∗NL (σ, η) > π.

Evaluate (27) at σ = σ∗NL:∫ η

η
H (φ∗NL (σ∗NL, η))CNL (σ∗NL, η) g (η) dη >

∫ η

η
H (φ∗L (σ∗NL, η))CL (σ∗NL, η) g (η) dη.

(28)
Noting that σ∗NL does not depend on λ, if λ is suffi ciently small then it follows from
(28):

qr

∫ η

η
H (φ∗NL (σ∗NL, η))CNL (σ∗NL, η) g (η) dη (29)

> λ

∫ η

η
(1−H (φ∗L (σ∗NL, η)))CL (σ∗NL, η) g (η) dη +

qr

∫ η

η
H (φ∗L (σ∗NL, η))CL (σ∗NL, η) g (η) dη

10



Given that p is decreasing then (29) implies (when λ is suffi ciently small):

qrp

(
λ

∫ η

η
(1−H (φ∗L (σ∗NL, η)))CL (σ∗NL, η) g (η) dη

+qr

∫ η

η
H (φ∗L (σ∗NL, η))CL (σ∗NL, η) g (η) dη

)

> qrp

(
qr

∫ η

η
H (φ∗NL (σ∗NL, η))CNL (σ∗NL, η) g (η) dη

)

> qrp

(
qr

∫ η

η
CNL (σ∗NL, η) g (η) dη

)
= σ∗NL.

Hence,

qrp

(
λ

∫ η

η
(1−H (φ∗L (σ∗NL, η)))CL (σ∗NL, η) g (η) dη

+qr

∫ η

η
H (φ∗L (σ∗NL, η))CL (σ∗NL, η) g (η) dη

)
> σ∗NL

and thus σ∗L > σ∗NL.
In proving σ∗L > σ∗NL, the preceding analysis presumed ω > σ. If, contrary to

that presumption, σ∗L ≥ ω then the supposition that ω > σ∗NL would again imply
σ∗L > σ∗NL.

Proof of Theorem 7. Given that σ = qrs and r,s ∈ [0, 1] (hence, are bounded),
it is immediate that

lim
q→0

σ∗NL = 0, lim
q→0

σ∗L = 0,

which implies

lim
q→0

CNL (σ∗NL) = lim
σ→0

CNL (σ) , lim
q→0

CL (σ∗L) = lim
σ→0

CL (σ) .

To show the equilibrium cartel rate is lower with a leniency program, it is then
suffi cient to prove:

lim
σ→0

CNL (σ) > lim
σ→0

CL (σ) . (30)

Given θ = 0 < ω then σ ∈ (θ, ω) holds as σ → 0 in which case Theorem 6 proves
(30).

Proof of Theorem 8. If C (σ) > 0 then η̂ (σ) > η and Y ∗ (σ, η) > αµ ∀η ∈
(1, η̂ (σ)] . Furthermore, since Y ∗ (σ, η̂ (σ)) > αµ and Y ∗ (σ, η) is non-increasing in η
(proof available on request) then

lim
η→1

Y ∗ (σ, η) > αµ.

11



Recall

φ (Y, σ, η) =
δ (1− σ) (1− κ) (Y − αµ)− [1− δ (1− κ)] [σ −min {σ, θ}] γ (Y − αµ)

(η − 1) [1− δ (1− κ)]

=
{δ (1− σ) (1− κ)− [1− δ (1− κ)] [σ −min {σ, θ}] γ} (Y − αµ)

(η − 1) [1− δ (1− κ)]

and
φ∗ (σ, η) ≡ max {min {φ (Y ∗ (σ, η) , σ, η) , π} , π}

where this encompasses both the case of a full leniency program (θ = 0) and no
leniency program (θ = 1). Given that Y ∗ (σ, η) is bounded above αµ as η → 1 then

lim
η→1

φ (Y ∗ (σ, η) , σ, η) = lim
η→1

{δ (1− σ) (1− κ)− [1− δ (1− κ)] [σ −min {σ, θ}] γ} (Y ∗ (σ, η)− αµ)

(η − 1) [1− δ (1− κ)]
= +∞

and, therefore,

lim
η→1

H (φ∗ (σ, η)) = lim
η→1

H (max {min {φ (Y ∗ (σ, η) , σ, η) , π} , π}) = 1.

Thus, when η is close to one, if a stable cartel forms (that is, φ∗ (σ, η) < π) then it is
fully stable (that is, φ∗ (σ, η) = π).

Next note that

C (σ, η) =
κ (1− σ)H (φ∗ (σ, η))

1− (1− κ) (1− σ)H (φ∗ (σ, η))

and, therefore,

lim
η→1

C (σ, η) = lim
η→1

κ (1− σ)H (φ∗ (σ, η))

1− (1− κ) (1− σ)H (φ∗ (σ, η))
=

κ (1− σ)

1− (1− κ) (1− σ)
.

We then have:

lim
η→1

[CL (σ∗L, η)− CNL (σ∗NL, η)]

=
κ (1− σ∗L)

1− (1− κ)
(
1− σ∗L

) − κ (1− σ∗NL)

1− (1− κ)
(
1− σ∗NL

)
= κ

[
(1− σ∗L) [1− (1− κ) (1− σ∗NL)]− (1− σ∗NL) [1− (1− κ) (1− σ∗L)][

1− (1− κ)
(
1− σ∗L

)] [
1− (1− κ)

(
1− σ∗NL

)] ]

=
κ (σ∗NL − σ∗L)[

1− (1− κ)
(
1− σ∗L

)] [
1− (1− κ)

(
1− σ∗NL

)] .
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Proof of Theorem 9. Let us first show: if σ ∈ (0, ω) and η̂NL (σ) ∈
(
η, η
)
then

η̂L (σ) < η̂NL (σ) . By the definition of η̂, if η̂ ∈
(
η, η
)
then there is a (maximal) fixed

point in Y of ψ (Y, σ, η) such that Y > αµ for η = η̂ but not for η > η̂:

∃Y ∗ (σ, η̂) ∈ (αµ, µ] such that Y 5 ψ (Y, σ, η̂) as Y = Y ∗ (σ, η̂) (31)

@Y ∈ (αµ, µ] such that Y = ψ (Y, σ, η) , ∀η ∈ (η̂, η] .

Recall that

ψ (Y, σ, η) =



∫ φ(Y,σ,η)
π {(1− δ)π + δ [(1− σ)Y + σW ]− (1− δ)σγ (Y − αµ)}h (π) dπ if σ ≤ θ

+
∫ π
φ(Y,σ,η) [(1− δ)απ + δW − (1− δ)σγ (Y − αµ)]h (π) dπ

∫ φ(Y,σ,η)
π {(1− δ)π + δ [(1− σ)Y + σW ]− (1− δ)σγ (Y − αµ)}h (π) dπ if θ < σ

+
∫ π
φ(Y,σ,η) [(1− δ)απ + δW − (1− δ)ωγ (Y − αµ)]h (π) dπ

.

and

φ (Y, σ, η) =
δ (1− σ) (1− κ) (Y − αµ)− [1− δ (1− κ)] [σ −min {σ, θ}] γ (Y − αµ)

(η − 1) [1− δ (1− κ)]
.

Let us next argue that
φ (Y ∗ (σ, η̂) , σ, η̂) ∈ (π, π] . (32)

Obviously, Y ∗ (σ, η̂) > αµ implies φ (Y ∗ (σ, η̂) , σ, η) > π. If φ (Y ∗ (σ, η̂) , σ, η) > π
then, by the continuity of φ (Y, σ, η) in η, it follows that ∃ε > 0 such that φ (Y ∗ (σ, η̂) , σ, η) >
π ∀η ∈ (η̂, η̂ + ε) . Given that η affects ψ (Y, σ, η) only through φ (Y, σ, η) - and re-
calling that H (π) = 1 - then

ψ (Y ∗ (σ, η̂) , σ, η̂) = ψ (Y ∗ (σ, η̂) , σ, η) ∀η ∈ (η̂, η̂ + ε)

which implies Y ∗ (σ, η̂) is a fixed point to ψ (Y, σ, η) ∀η ∈ (η̂, η̂ + ε) which contradicts
(31). We then conclude φ (Y ∗ (σ, η̂) , σ, η) ≤ π and (32) is true.

Using (32) for when there is no leniency program, η̂NL (σ) ∈
(
η, η
)
implies

φNL (Y ∗NL (σ, η̂NL) , σ, η̂NL) ∈ (π, π]. Since φ is increasing in Y , it then follows:

π > φNL (Y, σ, η̂NL) ,∀Y ∈ [αµ, Y ∗NL (σ, η̂NL)) . (33)

In the proof of Theorem 2 it was shown: if σ > 0 then φNL (Y, σ, η) > φL (Y, σ, η).
Given it is assumed σ > 0, (33) then implies

π ≥ φNL (Y, σ, η̂NL) > φL (Y, σ, η̂NL) , ∀Y ∈ [αµ, Y ∗NL (σ, η̂NL)] (34)
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Now consider:

ψNL (Y, σ, η)− ψL (Y, σ, η)

=

∫ φNL(Y,σ,η)

π
{(1− δ)π + δ [(1− σ)Y + σW ]− (1− δ)σγ (Y − αµ)}h (π) dπ

+

∫ π

φNL(Y,σ,η)
[(1− δ)απ + δW − (1− δ)σγ (Y − αµ)]h (π) dπ

−
∫ φL(Y,σ,η)

π
{(1− δ)π + δ [(1− σ)Y + σW ]− (1− δ)σγ (Y − αµ)}h (π) dπ

−
∫ π

φL(Y,σ,η)
[(1− δ)απ + δW − (1− δ)ωγ (Y − αµ)]h (π) dπ

After some simplifying steps:

ψNL (Y, σ, η)− ψL (Y, σ, η)

=

∫ φNL(Y,σ,η)

φL(Y,σ,η)
{(1− δ) (1− α)π + δ (1− σ) (Y −W )− (1− δ) (σ − ω) γ (Y − αµ)}h (π) dπ

+

∫ π

φNL(Y,σ,η)
[(1− δ)απ + δW − (1− δ) (σ − ω) γ (Y − αµ)]h (π) dπ.

Given σ ∈ (0, ω) and using (34), we have:

ψNL (Y, σ, η̂NL)− ψL (Y, σ, η̂NL) > 0. (35)

Next note that it follows from η̂NL ∈
(
η, η
)
that:

ψNL (Y, σ, η̂NL) ≤ Y ∀Y ∈ [αµ, Y ∗NL (σ, η̂NL)]

ψNL (Y, σ, η̂NL) < Y ∀Y ∈ (Y ∗NL (σ, η̂NL) , µ] .

Using (35), this implies

ψL (Y, σ, η̂NL) < Y ∀Y ∈ [αµ, Y ∗ (σ, η̂NL)]

ψL (Y, σ, η̂NL) < Y ∀Y ∈ (Y ∗ (σ, η̂NL) , µ] ,

and, therefore, η̂L (σ) < η̂NL (σ) .
We have thus far shown: η̂L (σ∗NL) < η̂NL (σ∗NL) . Given that η̂ (σ) is non-

increasing in σ (proof available on request), if σ∗L ≥ σ∗NL then η̂L (σ∗L) ≤ η̂L (σ∗NL)
which then implies η̂L (σ∗L) < η̂NL (σ∗NL).
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2 Appendix B: Numerical Methods3

There are 9 parameters in the general model: n, α, ω, θ, κ, δ, q, γ, and λ. The base-
line simulation assumes: (n, α, ω, θ, κ, δ, q, γ, λ) = (4, 0, .75, 0 or 1, .05, .85, .2, .5, 1),
where θ = 0 with leniency program and θ = 1 without leniency program.

For the probability of conviction function, we consider two functional forms:

p(λL+R) =

{
max{c−m(λL+R), 0.05} , where c < 1,

τ
ξ+υ(λL+R)ρ , where υ > 0, ρ ≥ 1, τ ∈ (0, 1], ξ ≥ τ

For the first specification, the probability decreases linearly with the caseload until it
reaches its minimum value of 0.05. The second specification assumes a concave then
convex relationship between caseload and the probability of success. The baseline
simulation assumes (c,m) = (.8, 40) for the linear specification and (τ , ξ, υ, ρ) =
(1, 1, 1000, 1.4) for the non-linear specification.

We assume a log-normal distribution, LN(µ, σ2), for the two distributions, H(π)
and G(η), where (µ, σ) = (0, 1.5) for H(π) and (µ, σ) = (1, 1.5) for G(η). The lower
and upper bounds for the distributions are: (π, π) = (1,∞),= and (η, η) = (1.1,∞).

The numerical problem has a nested structure. Given a value of r, the underlying
problem is to find a fixed point, σ∗(r), to σ = q × r × p(λL(σ) + R(σ)), where L(σ)
is the mass of cartel cases generated by the leniency program and R(σ) is the mass
of non-leniency cartel cases.

The procedure for finding σ∗(r) begins by specifying an initial value for σ. For
each η, we need to solve for a fixed point determining the collusive value: Y ∗(σ, η) =
ψ(Y ∗(σ, η), σ, η). As there may be multiple fixed points, the Pareto criterion is used
which selects the largest fixed point. Since ψ(Y, σ, η) is increasing and ψ(µ, σ, η) < µ
then, by setting Y 0 = µ and iterating on Y t+1 = ψ(Y t, σ, η), this process converges
to the largest fixed point.

In computing the stationary distribution of cartels, we need to take the step of
computationally searching for η̂(σ) which is the smallest industry type for which
collusion is not incentive compatible for any market condition. η̂(σ) is defined by:
Y ∗(σ, η) > αµ for η < η ≤ η̂(σ) and Y ∗(σ, η) = αµ for η > η̂(σ). To perform this
step, we set η = 1.1 and η = 10 and use a 1,000 element finite grid of values for
η, denoted Γ(η, η). η̂(σ) is located by applying the iterative bisection method on
Γ(η, η). As part of the bisection method, η needs to be set at a suffi ciently high value
so that Y ∗(σ, η) = αµ. Once having identified η̂(σ) and using Y ∗(σ, η), φ∗(σ, η) is
calculated for a finite grid over [η, η̂(σ)]. These values are then used in computing
L(σ) and R(σ). The integration uses the Newton-Cotes quadrature method with the
trapezoid rule (see Miranda and Fackler, 2002).

Choosing an initial value for σ and using our derived expressions for L(σ) and
R(σ), we then compute: σ̂(r) = q×r×p(λL(σ)+R(σ)). After specifying a tolerance
level ε, if |σ − σ̂(r)| > ε then a new value for σ is selected using the iterative bisection

3The Mathematica code that generates the equilibrium cartel rates for the baseline case is available
at: http://academic.csuohio.edu/changm/main/research/papers/CLPcodeA.pdf.
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method. Note that once a new value for σ is specified, the entire preceding procedure
must be repeated. This procedure is repeated until the process converges to the fixed
point value of σ∗(r) such that |σ∗(r)− σ̂(r)| ≤ ε. ε is set at .0002.

Given the equilibrium probability of paying penalties, σ∗(r), we can calculate
the equilibrium cartel rate, C(σ∗(r)), mass of leniency cases, L(σ∗(r)), and mass of
non-leniency cases, R (σ∗ (r)) .

In order to reduce the number of parameters, we solve for r by setting it to
minimize the equilibrium rate of cartels, C(σ∗(r)). Denoting this value as r∗, it is
numerically derived by allowing r ∈ {0, .1, ..., 1} and performing the procedures de-
scribed above for each of these values to identify the one that generates the minimum
cartel rate.

In addition to the baseline parameter values, we considered a wide variety of pa-
rameter values off of the baseline in order to check for the robustness of the main
properties identified in the paper. Specifically, for both the linear and non-linear
p(λL + R), we considered γ ∈ {0.7, 0.8, 0.9}. Further robustness checks were per-
formed for the non-linear p(λL + R) for the following parameter values off of the
baseline: ρ ∈ {1.2, 1.4, 1.6}, γ ∈ {0.3, 0.7, 2.0}, λ ∈ {0.6, 0.8}, υ ∈ {100, 500}, n = 2
(and, hence, ω = 0.5 or 1),4 α ∈ {0.2, 0.5}, κ = 0.1, and δ ∈ {0.75, 0.95}. For all these
parameter values, the numerical results are consistent with the properties stated in
the paper: i) a leniency program can lower or raise the cartel rate; ii) the change in
average cartel duration from a leniency program is decreasing in the industry type,
η; and iii) η̂ is (generally) lower when there is a leniency program: η̂L < η̂NL.

4Note that ω = n−1+θ
n

, where θ = 0 with a leniency program and θ = 1 without a leniency
program. Hence, for n = 2, ω = 0.5 with a leniency program and ω = 1 without a leniency program.
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