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Abstract

The dynamics of social stigma are explored in the context of diffusion models.
Our focus is on exploring the dynamic process through which the behavior of
individuals and the interpersonal relationships among them influence the macro-
social attitude towards the stigma. We find that a norm of tolerance is best
promoted when the population comprises both those whose conduct is driven
by compassion for the stigmatized and those whose focus is on conforming with
others in their social networks. A second finding is that less insular social net-
works encourage destigmatization when most people are compassionate but it is
instead more insularity that promotes tolerance when society is dominated by
conformity.
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1 Introduction

In 1785, the philosopher Jeremy Bentham wrote an article critically examining the
harshness with which homosexuality was treated in England (Bentham and Cromp-
ton, 1978). He could not find a sound basis for such unforgiving treatment. Yet,
for many centuries before and the centuries thereafter, gays have been stigmatized.
However, in the last few decades, some parts of the world have experienced a sig-
nificant change in their attitudes towards gays. In Great Britain, the fraction of
adults expressing disapproval of sexual relations between adults of the same gender
declined from 64% in 1987 to 22% in 2012 (Park and Rhead, 2013).1 In the United
States, there has been a comparable change in attitude as reflected, for example, in
the growing acceptance of same-sex marriage. In 2001, the Pew Research Center
reported that 57% of Americans disapproved of same-sex marriage with only 35%
expressing approval. By 2016, those numbers had almost flipped, as 55% approved
and 37% disapproved.2 Of course, in some sub-groups of the United States and in
many parts of the world, homosexuality is still a powerful stigma and associated with
it is an intolerance of gays (Adamczyk, 2017).

The changing attitudes regarding gays highlights the endogeneity of an attribute
as a stigma and naturally raises questions of what would lead to a movement from
intolerance to tolerance. The objective of this paper is to investigate theoretically the
social dynamics of stigma towards deriving insight into the conditions conducive to a
society expressing acceptance of those previously stigmatized. What change in social
conditions can disrupt a norm of intolerance? What are the conditions sustaining a
norm of acceptance?

To address these questions, we begin with the pioneering perspective of Goffman
(1963) on stigma, which he defines as an attribute that signals a deviation from the
social norm and can be a source of harmful discrimination. In his micro-social theory
of stigma, there are three types of actors. There are those endowed with the attribute
which may be considered a stigma by others in society. Then there are those who are
free of such an attribute, of which there is a subset, which Goffman refers to as "the
wise," who are sympathetic toward the stigmatized few. The emphasis in his theory
is on the one-on-one relationship between these three types of actors rather than the
attributes themselves: "The term stigma, then, will be used to refer to an attribute
that is deeply discrediting, but it should be seen that a language of relationships, not
attributes, is really needed."3

In spite of the emphasis placed by Goffman on relationships, a literature review
fifty years later noted the striking absence of research taking that perspective:4

1For more evidence on the growing acceptance of gays, see Smith, Son, and Kim (2014).
2Survey data was downloaded from http://www.pewforum.org/2016/05/12/changing-attitudes-

on-gay-marriage/ on May 28, 2017.
3Goffman (1963), p. 3.
4Pescosolido and Martin (2015), p. 105.
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As Goffman (1963) reminded us early on, stigma is fundamentally a
social phenomenon rooted in social relationships and shaped by the cul-
ture and structure of society. As such, the solution to understanding and
changing must similarly be embedded in social relationships and chang-
ing the structures that shape social relationships. Yet the research in this
area remains at an early stage and primitive in nature.

Towards understanding social norms regarding stigma, this paper develops a com-
putational framework that encompasses the macro-social implications of the inter-
personal relationships among different types of actors and thereby goes beyond the
micro-sociological treatment of stigma. Following Goffman (1963), we incorporate
three types of agents in our model. First, we divide the population into those with
and without the stigmatizing trait. An agent with the stigmatized trait is modelled
as deciding whether or not to reveal the distinctive trait. This decision will depend
on the extent to which others in the agent’s social network are accepting of those with
the trait. Using Goffman’s (1963) language, the stigma considered here is then of the
discreditable type.5 Some examples include sexual orientation, mental disorder, drug
addiction, alcoholism, criminal background, certain traits of ethnic group, nation-
ality, or of religion that is deemed a deviation from the accepted norms (including
atheism). For those agents in the majority without that trait, they decide whether or
not to be accepting of those with the trait. Consistent with diffusion models, some
of those agents make their decision based on a desire to conform, and, therefore,
are tolerant if and only if enough other agents in their social networks are tolerant.
Distinct from previous diffusion models, we encompass another type of agent who is
modelled on "the wise" as described by Goffman (1963). These agents do not have
the trait but are compassionate with regards to those who are stigmatized. They are
accepting as long as there are some in their social networks known to have the trait.

The presence of these three types of agents introduces a rich triadic dynamic.
Those with the distinctive trait will only reveal it if there are enough accepting agents
in their networks. Those who are sympathetic towards the stigmatized will express
their support but only if the stigmatized reveal themselves. And those who are con-
formists will be accepting of the stigmatized only when enough other agents have
expressed acceptance. With these social relationships operating within a population
over time, there are two potential drivers of tolerance that we explore. First, how
does the relative presence of compassion and conformity in a society affect whether a
norm of acceptance develops? We find that both traits have a role to play and that
acceptance is maximized when there is a mix of agents, some who are compassionate
and some who conform. Second, how does the insularity of agents’social networks
affect whether a norm of acceptance develops? This question is central to the diffu-

5Goffman (1963), in considering individuals whose stigmatizing attributes are not immediately
evident, specifies two levels of stigma —discreditable and discredited. In the first, the individual’s
stigma has not yet been revealed, but may be revealed intentionally by him (and, hence, he is in
control of his status). The main issue for the stigmatized individual is managing his concealed
identity. In the second case, the individual’s stigma has already been revealed, in which case it
directly affects the behavior of those around him.
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sion models of Watts and Strogatz (1998) and Centola and Macy (2007), and has its
roots in the seminal work of Granovetter (1973). Here, we find that the insularity
of networks interacts with the mix of compassion and conformity. When orthodoxy
(or conformity) is strong in a society, highly insular networks are conducive to toler-
ance. However, when orthodoxy is weak and compassion is strong, the weak ties of
Granovetter (1973) and Watts and Strogatz (1998) can promote tolerance.

Our research has implications for two distinct strands of research. First, the
micro-sociological study of stigma starting with Goffman (1963), which while empir-
ically rich and insightful, has been restricted to considering one-on-one relationships
between the different actors in a system. How such inter-personal relationships may
spill over and ultimately change the social status of stigma at the macro level has
not been explored. Our work provides a way to bridge that gap by explicitly mod-
elling the structure of interactions among different types of agents and tracking the
endogenous macro-level outcome of such interactions over time.

Second, there is the voluminous literature modelling social diffusion which gen-
erally assumes that an individual’s decision to adopt or reject the object of interest
depends on how widely it has been adopted among a relevant subset of agents such
as friends, colleagues, and neighbors (Rogers, 2003; Valente, 1995). The object of
interest may be a technological innovation such as a new farming practice (Ryan and
Gross 1943), a management practice (Strang and Soule 1998), a cultural fad such as
what clothes to wear (Crane 1999), a residential choice such as where to live (Schelling
1971), or an antisocial act such as participating in a riot or a strike (Bohstedt and
Williams 1988; Conell and Cohn 1995). The situation is fundamentally distinct, how-
ever, when the "object of interest" is a person rather than an idea or a practice, and
the decision is whether to approve or disapprove of them. That the object is a person
adds two additional agent types to the usual presence of conformists in a model of so-
cial diffusion. First, there are those individuals whose decision to accept or reject the
stigmatized is driven not by conformity but by the value they attach to stigmatized
agents’well-being. In other words, they care about them and that is determinative.
Second, those stigmatized agents decide whether to reveal their stigma, and it is only
through disclosure can the compassionate agents be induced to act. The presence of
the three types of agents introduces a new triadic dynamic to social diffusion models.
One of the contributions of this paper is to begin to understand the implications of
this dynamic, how it depends on the structure of the social network, and what can
cause a shift in social norms.

2 The Model

2.1 Spatial Environment

There is a fixed population of agents, M ≡ {1, ...,m}, who are distributed over a
two-dimensional X × Y lattice. One agent is located at each point (or node) on the
lattice - so m = |X| ∗ |Y | - where a point (x, y) represents an agent’s location. The
lattice wraps around from right to left and from top to bottom, forming a torus; see
Figure 1(a). The use of a torus ensures symmetry in the physical environment for all
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agents, hence avoiding a potential edge effect.6 Each agent i has a "neighborhood,"
denoted N(i), that consists of all other agents within the Moore neighborhood of
range n.7 This means that each agent has (2n+ 1)2 − 1 neighbors. As a patch from
the torus in Figure 1(a), Figure 1(b) gives an example of a Moore neighborhood of
range 3 for the agent represented by the hollow square at the center.

2.2 Agents: Networks and Types

Agent i has a social network, denoted L(i), that consists of l links with a subset of
other agents in the population: L(i) ∈ {B|B ⊂ M, |B| = l, i /∈ B}. A network is
naturally thought of as family and friends, and links are assumed to be symmetric:
j ∈ L(i) ⇐⇒ i ∈ L(j). Most, though not necessarily all, of these links are with the
agent’s neighbors. The construction of the network is described in Section 3.

Some agents may be endowed with a trait that could be the basis for a stigma.
We refer to them as stigmatized (though recognizing that whether the attribute is a
stigma is endogenous). The stigma considered here is of the discreditable type, such
as homosexuality and atheism. The decision faced by a stigmatized agent is whether
to reveal the attribute. The remainder of the population comprises agents lacking the
attribute, who are referred to as normal. Their decision is whether to accept those
with the attribute; that is, whether or not to stigmatize them.

A stigmatized type, which we also refer to as a type S, would like to reveal that
he has the attribute but is concerned with being ostracized. It is assumed that he
will choose to "reveal" if and only if the fraction of agents in his social network who
are accepting of those with this trait equals or exceeds a critical threshold τS ∈ (0, 1).
It is assumed that when a stigmatized agent reveals his trait that he also expresses
acceptance of others like him.

A normal agent decides whether or not to express his acceptance of those with
the stigmatized trait. There are two types of normal agents, and they differ in the
basis upon which they make the decision to accept the stigmatized. The acceptance
decision of a conformist (CNF ) is driven by a desire to conform. He will accept the
stigmatized if and only if the fraction of agents in his network that have expressed
their acceptance of the stigmatized is at least some critical value τCNF ∈ (0, 1).
The conformist type is common in diffusion models. There is a second normal type
whose decision of whether to accept the stigmatized is based on caring about those
in her network. A compassionist (CMP) will accept the stigmatized if and only if the
fraction of agents in her network with the stigmatizing trait (and who have revealed
it) is at least some critical value τCMP ∈ (0, 1). Thus, in making their acceptance
decisions, conformists rely on what all other agents are doing, while compassionists
respond to the stigmatized. The compassionist type is unique to diffusion models
but is natural given the "object" of diffusion involves people, as opposed to ideas or

6Without the spatial continuity offered by the torus, the agents located near the four edges of the
grid would end up with neighborhoods that are truncated.

7On a two-dimensional grid, the Moore neighborhood of range n surrounding a given node,
(x0, y0), is defined by: {(x, y) : |x− x0| ≤ n, |y − y0| ≤ n} . The number of nodes in the Moore neigh-
borhood of range n is (2n+ 1)2. When the center node, (x0, y0), is excluded, it is (2n+ 1)2 − 1.
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practices.
In sum, agent i can be one of three possible types: z(i) ∈ {S, CNF, CMP}.

The critical thresholds are common within each agent type, but differ between the
three types, and stay fixed over time. The higher is an agent’s threshold, the more
resistant she is to changing her status as it takes a bigger fraction of her network links
to induce the change. For a normal agent, the threshold represents the degree of her
"intolerance" toward the stigmatized, while for a stigmatized agent it represents his
"reluctance" to reveal himself for fear that he may be ostracized by those in his
network. Finally, it is assumed that a proportion s of the population are stigmatized
and the remaining proportion (1 − s) are normal. Of the normal population, a
proportion w are specified as conformists and (1−w) as compassionists. Hence, given
the population of m agents, there are s ·m agents who are stigmatized, (1− s) ·m ·w
conformists, and (1− s) ·m · (1− w) compassionists.

2.3 Agent States and State Transition Rules

At any moment of time, the state of a stigmatized agent is either "revealed" (in
which case he has also expressed acceptance of the stigmatized) or "hidden" (in
which case he has not expressed acceptance with regards to the stigmatized). The
state of a normal agent is either she has expressed acceptance of the stigmatized
or not. With a conformist, we refer to the "not acceptance" state as "opposition,"
while for a compassionist (and a stigmatized agent) we refer to it as "neutral." While
this semantic distinction is not important for the ensuing analysis, as the focus is
on how many are accepting of the stigmatized, it seems natural to think of the
"non-accepting" state as meaning opposition (otherwise, there is no harm from being
stigmatized) with the exception of the compassionists who do not express either
acceptance or opposition until they feel a compulsion to support those in their social
network.

Although it will be assumed that most of the stigmatized agents in the population
start out by hiding their trait, it is essential for there to be a small seed group who
have revealed so that the diffusion process can be initiated. One could imagine
that they are the brave or principled few or that the possession of the trait was
inadvertently revealed. We may also allow some of the normal agents to start in
the state of acceptance, though most (and sometimes all) will start in the state
of non-acceptance. Notationally, a proportion pr of the stigmatized start out as
"revealed" (and, therefore, "accepting"), and a proportion pa of the normals start
out as "accepting." Note that the population begins in a state for which the social
norm is intolerance (pa is low) and the stigmatized are hidden (pr is low).8

From these initial conditions for the population, let us describe how the state of
the population evolves. For this purpose, we denote by αti ∈ {N,A,O} the expres-
sion of attitude state of agent i in period t, where N denotes "neutral," A denotes
"acceptance," and O denotes "opposition." Likewise, we denote by βti ∈ {R,H} the

8 In the computational experiment, the initial conditions are implemented by randomly selecting
pr ·s ·m agents from the stigmatized population and pa ·(1−s) ·m agents from the normal population
to be the seed agents at t = 0.
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disclosure state of (stigmatized) agent i in period t, where R denotes "revealed" and
H denotes "hidden."9 The state of an individual agent’s network in period t is sum-
marized by rti and ati, where r

t
i is the proportion of revealed type-S agents in i’s

network and ati is the proportion of accepting agents in i’s network:

rti =

∣∣{j ∈ L(i)|βtj = R}
∣∣

|L(i)| (1)

ati =

∣∣∣{j ∈ L(i)|αtj = A}
∣∣∣

|L(i)| (2)

For all t ≥ 1 an individual agent’s states are updated based on the following rules:

• For all i with z(i) = S :

— If
(
αt−1i , βt−1i

)
= (A,R), then

(
αti, β

t
i

)
=
(
αt−1i , βt−1i

)
;

—Otherwise, (
αti, β

t
i

)
=

{
(N,H) if 0 ≤ at−1i < τS

(A,R) if τS ≤ at−1i ≤ 1. (3)

An individual with the stigma will switch from the state of "hidden" to that
of "revealed" if the proportion of agents in his network who are accepting of
the stigma is at least as great as τS . Otherwise, he remains "hidden." If he
discloses his stigmatizing trait, he expresses his acceptance of other agents with
the stigma. For the stigmatized agents, (A,R) is an absorbing state such that
once they are revealed, they remain in that state.10

• For all i with z(i) = CNF,

αti =

{
O if 0 ≤ at−1i < τCNF

A if τCNF ≤ at−1i ≤ 1. (4)

A conformist is "opposing" if the proportion of other agents in his network
who have expressed themselves to be "accepting" of the stigma is below τCNF .
Otherwise, he is "accepting." At any point in time, a conformist can switch his
state according to this rule.

• For all i with z(i) = CMP :

αti =

{
N if 0 ≤ rt−1i < τCMP

A if τCMP ≤ rt−1i ≤ 1. (5)

9One could suppose that all agents are defined by
(
αti, β

t
i

)
, where normal agents are, effectively,

always in the "hidden" state, βti = H, because they do not have the stigmatized trait.
10The intuition is that everyone in his network knows about his stigmatizing trait and this cannot

be reversed, since the population remains fixed over time.
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A compassionist who is currently in the state of "neutral" will stay in that
state as long as the proportion of agents in his network who are "revealed" to
have the stigma remains below τCMP . Once the proportion of revealed agents
in his network is at least τCMP , a compassionist will switch to the state of
"accepting." Note that the compassionists, once "accepting," will never switch
back to "neutral," as the stigmatized individuals, once "revealed," never go
back to "hidden."

3 Setting Up the Computational Experiments11

3.1 Parameter Specifications

We create a population of 10,000 agents (m = 10, 000) and distribute them on a
100 × 100 grid which forms the outer surface of a torus. Each agent is assigned its
type at the outset based on the two parameters, s and w; we set s = 0.1 so that 10%
of the population are stigmatized. The 1, 000 stigmatized agents and 9, 000 normal
agents are randomly allocated over the torus. Out of those 9, 000 normal agents,
a proportion w are randomly selected to be conformists (CNF s) with the rest as
compassionists (CMPs).

The first issue of interest is how the proclivity for compassion and conformity in
the population affects the rate of social acceptance. To explore this issue, we consider
w ∈ {0, 0.1, 0.2, ..., 1}. The normal population consists only of compassionists when
w = 0 and only of conformists when w = 1. For 0 < w < 1, the population has a
mixture of the two types.

The second issue is how the structure of the social networks affects the diffusion
process and ultimately the steady-state rate of acceptance. The focus is on the degree
of insularity of networks. One can think of agent i’s neighborhood N(i) as defined
by proximity in terms of geography (those in the same town) or education or income
or some other trait. The issue is to what extent agent i’s social network L(i) is
largely drawn from that community or instead has links with those in other regions,
educational levels, or income levels. The more that L(i) is drawn from N(i), the
more insular are networks.

More formally, we construct the network for each individual, L(i), by creating
links from different regions of the space. For each agent i, most of her network
connections will come from her own neighborhood, N(i), while the remaining con-
nections come from outside, M − N(i) − {i}. Specifically, each connection in i’s
network is randomly selected from M −N(i)−{i} with probability q and from N(i)
with probability (1− q). The range of the Moore neighborhood, n, is assumed to be
3 in our experiments. Hence, each agent has exactly 48(= (2 × 3 + 1)2 − 1) neigh-
bors. A fraction (1− q) of his network connections comes from these 48 agents in her
neighborhood, while the remaining fraction q come from the other 9,951 agents. We
consider q ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.3, ..., 0.9, 1}, where q = 0 is the benchmark
case for our presentation. When q = 0, the networks are close to being regular lattice

11The source code is in the Online Appendix (Appendix C).
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networks and are highly insular.12 As q rises above zero, an increasing fraction of an
agent’s network connections come from outside of his neighborhood.

The size of an agent’s network (i.e., the number of links) is specified to be l = 20.
However, given that the networks are bidirectional, assigning a fixed network size
for every agent in the population may not be feasible. Even when it is feasible,
it is computationally intensive to construct the bidirectional networks of equal size
across the entire population. Instead, we impose the condition that the networks for
the population achieve a mean size of 20, which reduces the computational intensity
considerably. Subject to the networks having mean size of 20, we then construct
individual networks through a random matching algorithm assuming symmetry; if
j is in i’s network, then i is also in j’s network. The random matching is done
sequentially for each agent in the population until the average network size reaches 20.
Figure 2 shows the distribution of network sizes across agents from this procedure.
In addition to reducing computational intensity, the variation in network sizes is
descriptively realistic.

The initial conditions for the population are given by pr (the proportion of stigma-
tized agents who are revealed) and pa (the proportion of the normal agents who are
accepting). We consider pr ∈ {0.15, 0.25} and pa ∈ {0, 0.025}. pa is kept low because
if many normal agents were initially accepting then preliminary simulations showed
that acceptance prevails almost irrespective of the other parameters. For our para-
meterizations, we want the obtaining of a norm of social acceptance to be challenging
but feasible so that we can assess the conditions that promote it. Given that there
are 1,000 stigmatized agents and 9,000 normal agents, when (pr, pa) = (0.25, 0.025) ,
the number of initially revealed stigmatized agents is 250 (= 1000 ∗ 0.25), which is
of the same order of magnitude as the number of initially accepting normal agents,
225 = (9000 ∗ 0.025). The baseline values and the set of all parameter values used in
the simulations are provided in Table 1.

3.2 Endogenous Variables to Track

Given the initial conditions and the set of parameter values, we perform 64 indepen-
dent replications using a fresh set of random numbers for each run; specifically, the
type and the network of each agent are re-randomized each time.13 In each replica-
tion, the acceptance/disclosure status of all agents is tracked as they respond to the
changing state of their social networks. This is done for the first 300 periods as that
time horizon proved more than suffi cient for the social system to reach a steady state
where the mean values of the endogenous variables remain constant over time.14

The two primary endogenous variables whose movements we follow for each repli-
cation k ∈ {1, ..., 64} are the rate of acceptance by the normals,

{
RAtk

}300
t=0
, and the

12 It would be a regular lattice if each individual is connected to everyone in his neighborhood.
Our network, even with q = 0, is not strictly a regular lattice network, as an individual has fewer
links then the number of agents in her neighborhood, with those links randomly selected.
13For each parameter configuration considered in this paper, we performed sixty-four independent

replications in parallel using 64 cores at the Wharton HPCC (High Performance Computing Cluster).
14That 300 periods was suffi cient is confirmed by running many replications for longer horizons.
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rate of disclosure of the stigmatized,
{
RDt

k

}300
t=0

:

RAtk =
number of all normal agents with αti=A

number of all normal agents

RDt
k =

number of all stigmatized agents with βti=R
number of all stigmatized agents .

(6)

For much of the analysis, we report their average values over the 64 replications:

RA
t
= 1

64

∑64
k=1RA

t
k

RD
t
= 1

64

∑64
k=1RD

t
k.

(7)

Both endogenous variables reach their steady-states well before the terminal period.
As such, we report their values at t = 300 as the steady-state.

4 The Triadic Social Dynamic

We start with the baseline set of parameters as specified in Table 1. Recall that 10%
of the population (= 1, 000) are endowed with the stigmatizing trait. The initial
seed population is specified at (pr, pa) = (0.15, 0) so, at the outset of the process,
150 stigmatized agents have revealed themselves (and are accepting), 850 stigmatized
agents are hidden (and are not accepting), and 9,000 normal agents are not accepting.

The thresholds for the three types of agents are set at:

τS = 0.4, τCNF = 0.3, τCMP = 0.05. (8)

When an agent’s network has 20 links, a stigmatized agent discloses the attribute
when at least 8 = (20 ∗ 0.4) agents in his network have expressed themselves to be
accepting of the stigma. A conformist is accepting of the stigma if 6 = (20 ∗ 0.3) or
more agents in his network are accepting of the stigma. Finally, a compassionist is
accepting when one or more agents in her network have revealed themselves to have
the stigmatizing trait.15

The thresholds have been chosen according to two criteria. First, we want thresh-
olds which make the obtaining of social acceptance sensitive to the model’s para-
meters so that insight can be acquired into the factors that promote or discourage
acceptance of those who are distinctive. Having explored a range of thresholds, these
particular values meet that criterion. Second, we want thresholds that are sensible.
Our starting point is that people intrinsically care about those in their social net-
works, but pressure to conform can create a tension. A conformist is someone who
is highly sensitive to those pressures. If he did not care at all about the person then
one might imagine a conformist doing whatever the majority of those in his network
are doing. But we suppose he does care about the stigmatized in his network and
so we set the threshold for acceptance below 0.5. τCNF = 0.3 seems a reasonable

15Recall that the mean number of links is 20. So these thresholds in terms of the number of agents
can be slightly higher or lower than as described. Of particular note, for those compassionists who
have more than 20 links (but no more than 40 links, which is always the case), it will take at least
two revealed stigmatized agents in their networks to induce them to accept.
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value to capture that trade-off. In contrast, a compassionist is viewed as being highly
independent and is largely driven by caring for others. With around 20 links in one’s
network, τCMP = 0.05 means that a compassionist just needs to know someone (or
two) stigmatized people in order for them to support tolerance. It is diffi cult to de-
termine a compelling value for a stigmatized person to reveal but requiring 40% of
one’s network to be accepting seems plausible. In any case, simulations have been
conducted with other thresholds and, while the output does change, the qualitative
insight is largely unaffected.16

The mix of the conformists and compassionists is specified at w = 0.3 for the
baseline analysis presented in this section. Hence, there are 2, 700 conformists and
6, 300 compassionists in the population of normal agents. Finally, the social networks
for the individuals are highly insular in that q = 0, so all network connections are
from an agent’s neighborhood.

The two endogenous variables, RAtk and RD
t
k, capture the aggregate behavior

of the population at time t in replication k. The mean behavior of the population
can then be summarized by the time series of the simulation outputs when they are
averaged over the 64 replications. Figure 3 captures the time paths of the rates of
acceptance and disclosure for: 1) a single randomly chosen replication (left plots);
and 2) the average of the 64 replications (right plots). Figure 3(a) shows the rate of
acceptance among all normal agents, RA

t
, over the horizon of 300 periods. The rate

starts out at zero, but rises quickly to approach the steady-state rate of over 60% by
t = 70. Figure 3(b) reports the rate of disclosure by the stigmatized agents, which
starts out at the seed rate of 15%, but quickly rises to stabilize at the rate of almost
75% by t = 70.

To better understand the population dynamics, we decompose the rate of accep-
tance into acceptance by the conformists and by the compassionists. In Figure 3(c),
the dashed curve is the fraction of the conformists who accept (= number of con-
formists who accept/number of all conformists), and the solid curve is the fraction of
the compassionists who accept (= number of compassionists who accept/number of
all compassionists). With both fractions starting at zero, one can see that compas-
sionists are initially accepting at a higher rate than conformists. However, the rate of
increase in acceptance is soon higher for conformists and, eventually, conformists are
more accepting than compassionists. In the steady state, the conformists achieve an
acceptance rate of about 70%, while the compassionists achieve an acceptance rate
of about 55%.

The triadic dynamic between the three types can be seen by tracing the number
of agents of each type who accept/reveal over time, especially during the transient
stage prior to reaching the steady state. For a randomly chosen replication (run
#21), Table 2 reports: 1) the number of stigmatized agents who have revealed; 2)
the number of compassionists who are accepting; and 3) the number of conformists
who are accepting. The associated proportion of each agent type who have revealed
or accepted (i.e., the numbers are divided by the total number of agents of each type)
are provided inside the parentheses.

16See Appendix B in the Online Appendix.

11



At t = 0, the dynamic is initiated by the 150 stigmatized agents who start out in
the revealed state. While none of the normals are initially accepting of the stigma,
those compassionists who are connected to at least one (or two) of the revealed stig-
matized agents are accepting as of t = 1 since their acceptance decisions are based
on observing disclosures by the stigmatized in their networks. For this particular
run, 978 compassionists switched to accepting in t = 1 because of the 150 revealed
stigmatized agents. None of the conformists are accepting in t = 1. Their accep-
tance decisions are based on the observed acceptances in their networks and the only
acceptances are from the 150 stigmatized agents in t = 0, which evidently is not
enough to cause any of the conformists to switch from opposition to acceptance.
That changes come t = 2, for 169 conformists are now accepting. This conversion is
due to those 978 compassionists who switched to acceptance in t = 1, which resulted
in 169 conformists finding enough agents in their networks accepting so that they now
are accepting. The acceptances by the 978 compassionists also induced fifteen more
stigmatized agents to reveal in t = 2. These additional disclosures induce 64 more
compassionists to accept in t = 3, which raises the number of accepting compassion-
ists from 978 to 1,042. More significant is the increase in the number of conformists
who are now accepting, which has risen from 169 to 273. This is partly due to the
additional 15 stigmatized and compassionists who are accepting, but is primarily due
to the 169 conformists who became accepting in t = 2. Recall that their accep-
tance decisions are based solely on acceptances by others in their networks. These
conformity-based acceptances then, come t = 4, induce more stigmatized agents to
reveal, which then causes more compassionists to accept, and significantly more con-
formists to accept. At that point, the triadic reinforcement process takes off. By
t = 45, there are 726 stigmatized agents who have revealed their attribute and 1,937
conformists who are accepting, which are their respective steady-state values. Given
the steady-state number of disclosures by the stigmatized population, the compas-
sionists achieve their steady-state in t = 46. Note that the steady state has 3,545
compassionists who are accepting, which means there are still 2,755 compassionists
who are not accepting. These compassionists are not accepting because there are not
enough revealed stigmatized agents in their networks. That could be due to there
being no stigmatized agents or those that are in their networks remain hidden.

As each agent in our model is assigned a specific location on the torus with a
neighborhood-based social network, the triadic dynamic driving the diffusion process
has a spatial component. In Figure 4, we offer a series of snapshots taken from a
single replication at various points in time over the horizon. At each time period
t ∈ {1, 2, 6, 12, 24, 48}, the surface of the torus over which the agents are distributed
is visualized as a 100× 100 grid.17 The black dots in the plots in the left column are
the positions of the conformists who are accepting, the plots in the middle column
are the positions of the compassionists who are accepting, and the plots in the right
column are for the agents with the stigmatizing trait where dots are black if they

17The grid lines are removed from these figures to improve the visual representation of the agents’
states as they evolve within this space. As noted earlier, a torus is formed by extending the left edge
to the right edge and the top edge to the bottom edge.
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have revealed themselves and gray if they are hidden.
The triadic dynamic can now be made more concrete by visualizing the evolving

attitudes toward stigma at the individual agent level. Starting from the top row
(t = 1), there are 150 agents whose stigmatizing traits are initially revealed; these are
the seed agents who are shown as the black dots in the right plot in the first row. Note
that none of the conformists are accepting of the stigma at this point. The seed agents
who are initially revealed initiate the social dynamic by inducing some compassionists
(though no conformists) to react to their disclosure. In t = 1, those compassionists
who are connected to one or more revealed agents (or two or more when there are
more than 20 links) switch to accepting as indicated by the black dots in the middle
plot in the first row. Moving on to t = 2, the acceptances by the compassionists now
induce some of the connected conformists to accept, while simultaneously motivating
some of the stigmatized agents to reveal themselves. These additional disclosures
further invite acceptances by both conformists and compassionists, which in turn
induce disclosure by more stigmatized agents, and the triadic feedback mechanism
continues from there. The rest of Figure 4 shows the mutually reinforcing nature of
the interactions among the three types as time goes on. For this particular run, we
observe gradual diffusion of disclosure by the stigmatized agents and acceptance by
the normal agents. By t = 48 the population has already reached its steady state.

5 The Effect of the Mix of Compassion and Conformity
on Social Acceptance

In deciding how to treat those with distinctive attributes, a person can turn externally
to others for guidance or internally to what she thinks is proper. Societies may differ
in terms of the strength of orthodoxy and how much emphasis its members give
to conforming, even when it may mean harming those who ones care about. In
our model, this social heterogeneity is captured by the parameter w which is the
proportion of normal agents who accept the stigmatized when such acceptance is
suffi ciently common within their networks, and 1 − w is the proportion of normal
agents who accept the stigmatized when there are at least a few in their networks.
In this section, we investigate how the mix of compassion and conformity in the
population affects whether the society ends up tolerant of those who are distinct or
instead ostracizes them.

The initial exercise involved performing 64 replications for each w ∈ {0, 0.1, 0.2,
..., 1}, holding all other parameters at the baseline values including the network struc-
ture (at q = 0). Figure 5(a) shows the mean rates averaged over the 64 replications.
Figure 5(b) reports the distribution of the rates from all 64 replications using a box-
and-whisker chart, where the box represents the range of rates that are between 25%
and 75% quantiles.18 The numerical values for the quantiles are provided in Table 3.

18The horizontal line in the box represents the median, while the diamond represents the 95%
confidence interval about the mean. The lines at the top and bottom are, respectively, the maximum
and the minimum.
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Given the baseline parameter configuration, Figure 5(a) shows that the mean rate
of social acceptance of the stigmatized is maximized at w = 0.7, which means there
are 6, 300 conformists and 2, 700 compassionists. Though not reported here, the rate
of disclosure closely follows the rate of acceptance so that it also attains its maximum
at w = 0.7.19 That it is a mixture of conformists and compassionists which maximizes
acceptance was found for a wide range of parameterizations.20

Property 1: The rate of social acceptance is generally maximized when the popu-
lation consists of both compassionists and conformists.

Towards explaining Property 1, let us begin by considering the rate of acceptance
at the two extreme values, w = 0 and w = 1. When w = 1, the population consists
only of conformists. Recall from the previous section that, once there are enough
agents who are accepting in the population, conformists convert to acceptance at a
faster rate than compassionists. The problem when all normals are conformists is
that, unless the initial population has many agents accepting, the absence of com-
passionists prevents the creation of a critical mass of acceptance to start inducing
conformists to convert from opposition to acceptance. In contrast to conformists,
who need many in their networks to accept before they will accept, compassionists
will accept in response to only one or two stigmatized agents having revealed them-
selves. Hence, without compassionists, social acceptance fails to spread altogether
because there is no initial acceptance by the compassionists that can subsequently
induce acceptances by conformists. Replacing some of the conformists with com-
passionists (i.e., reducing w below 1) can raise the acceptance level early on, which
can then induce conformists to accept and eventually lead to the population-wide
diffusion of acceptance. For this reason, social acceptance is higher with a mix of
compassionists and conformists than when all normal agents are conformists.

This intuition is verified by separately inspecting the acceptance behavior of the
two types, which is reported in Figures 6 and 7. In Figure 6, the time paths of the
acceptance rate for conformists and for compassionists are plotted for two replica-
tions for w = 0.9. For run #14 in Figure 6(a), almost 15% of the compassionists
immediately accept in response to the stigmatized agents who are revealed in t = 0,
but their acceptance rate stays at that level for the remainder of the horizon. These
initial acceptances were insuffi cient to create the critical mass required to induce con-
formists to start accepting. In contrast, Figure 6(b) reports a case where the early
acceptance by compassionists is suffi cient to induce some of the conformists to start
accepting which then induces the stigmatized agents to reveal, and then there is a
sequence of triadic reinforcements. Eventually, the rate of acceptance by the con-
formists surpasses that by the compassionists, reaching acceptance by all conformists
19 In the Online Appendix (Appendix A), it is reported that there is a very high positive correlation

between the rate of acceptance and the rate of disclosure.
20The Online Appendix (Appendix B) presents the results on the mean rate of acceptance for

all w ∈ {0, ..., 1} and q ∈ {0, ..., 1} for sixteen different parameterizations based on the following
values for each of the five main parameters, (pr, pa, τS , τCNF , τCMP }: pr ∈ {0.15, 0.25}; pa ∈
{0, 0.025, 0.05, 0.1}; τS ∈ {0.4, 0.5}; τCNF ∈ {0.3, 0.35, 0.4}; τCMP ∈ {0.05, 0.075}. Those additional
runs support Property 1.
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at the steady state. Out of the 64 replications for w = 0.9, 60 replications failed to
take off (as in Figure 6(a)) and only 4 replications achieved successful takeoff (as in
Figure 6(b)).

Figure 7 shows the time paths for the two types in replications with successful
takeoff for: (a) w = 0.8; (b) w = 0.7; and (c) w = 0.6. It should be noted that
successful takeoffs were observed in 45 out of 64 replications when w = 0.8, and in 64
out of 64 replications when w = 0.7 or w = 0.6. The property to highlight in Figures
6 and 7 is that the acceptance rate among compassionists exceeds that of conformists
early on in the diffusion process, which substantiates the claim that acceptance by
compassionists is a prerequisite for acceptances by conformists.

While it has been shown and explained why acceptance is higher when there are at
least some compassionists, more intriguing is why social acceptance is not maximized
when all normal agents are compassionists. Note from Table 3 that for w = 0 the
median of the steady-state rates of acceptance is only 0.306 (with the maximum
value attained at 0.408); hence, only about 31% of the normals are accepting of the
stigma, even though all of them are compassionists. This lack of acceptance is partly
due to the small number of stigmatized individuals (only 10% of the population),
which means that some compassionists will have no agents with the stigma in their
social networks which, by itself, will prevent them from accepting. However, that
rather mechanical reason for the lack of acceptance does not fully explain why many
compassionists are not accepting. In Table 4, we report the rate of acceptance for
compassionists (a) and conformists (b) depending on the proportion of stigmatized
agents (whether revealed or hidden) in their social networks. For example, when
w = 0, 27.2% of the compassionists had networks comprised of 5 to 10% of stigmatized
agents. Note that the acceptance criterion for the compassionists is to accept if the
proportion of revealed stigmatized types is at least 5%. The takeaway from Table 4
is that many compassionists have ample stigmatized agents in their social networks
but are still not accepting. For example, only 68.8% of compassionists are accepting
even though their social networks have 30-35% of their links with stigmatized agents.
That some compassionists with multiple stigmatized agents in their social networks
are not accepting means that those stigmatized agents are remaining hidden. The
reason that the acceptance rate for compassionists is not as high as it could be is then a
coordination failure: Some compassionists are not accepting because the stigmatized
agents in their social networks are remaining hidden, and those stigmatized agents
are remaining hidden because there are not enough agents in their social networks
who are accepting.

By replacing some of those compassionists with conformists, some of these coordi-
nation failures can be corrected. Consider raising w from 0 to 0.1; thereby replacing
900 compassionists with an equal number of conformists. Some of those conformists
will accept even when there are no stigmatized agents revealed, as long as enough
agents are accepting. Those additional acceptances can induce the stigmatized agents
to reveal and that can cause some compassionists to accept; in that way, conformists
are disrupting the coordination failure between the stigmatized and the compassion-
ate. To see that conformists can accept where compassionists would not, consider
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the acceptance rate for those normal agents with social networks for which 5-10% of
the links are with stigmatized agents. When there are no conformists (w = 0), com-
passionists accept at the rate of 27.2%. When 10% of normal agents are conformists
(w = 0.1), conformists are accepting at a higher rate of 43.4%. More relevant, com-
passionists are now accepting at a higher rate; compare 35.5% with 27.2% when there
are no conformists. While it is not universally the case that the optimal mix entails
at least some conformists, it is very commonly true.

In sum, both those who conform - which may mean promoting tolerance or in-
tolerance - and those who intrinsically care about people irrespective of social norms
have a role to play in promoting tolerance. Without those who intrinsically care, it
is diffi cult to break away from a norm of not accepting those who are distinct. How
far acceptance (and also disclosure by the stigmatized) goes is limited however when
society lacks conformists. Those who seek to conform help push acceptance further
and, in particular, help break coordination failure in some networks with the stigma-
tized hiding their traits and compassionists not expressing support because there is
no one in their networks who have revealed themselves to have the stigma.

While some conformists are needed for maximal acceptance, it is noteworthy that
the rate of social acceptance can drop precipitously in response to adding conformists.
Examining Figure 5(a) and Table 3, note the sudden drop in the rate of acceptance
when the fraction of conformists is increased from 70% to 80% to 90%. While w = 0.7
leads to maximal acceptance, w = 0.9 results in a rate of acceptance close to zero for
75% of the replications. In comparison, the acceptance rate only gradually declines
as the fraction of conformists is lowered from 70% to 60% to 50%. The sensitivity of
social acceptance to having too many conformists is a general (though not universal)
property. It is then better for society to err on being overly compassionate than being
overly conformist.

Property 2: While both types are generally needed to achieve a high level of social
acceptance, there can be a critical value of w such that the rate of acceptance
drops sharply when the fraction of conformists exceeds that critical value.

That the rate of social acceptance is highly sensitive to reducing the fraction of
compassionists is due to the role they play. As previously explained, a critical mass
of compassionists is crucial to induce conformists to start accepting. Short of that
critical mass will prevent the triadic reinforcment dynamic from taking off. In con-
trast, the role of conformists is in spreading acceptance and breaking coordination
failures between compassionists and stigmatized agents. That effect is more linear so
we observe that the rate of social acceptance is smoothly declining as the fraction of
conformists is reduced below the value that maximizes tolerance.

In concluding, Figure 8 shows that both Properties 1 and 2 are robust to changes
in the initial conditions: (a) (pr, pa) = (0.15, 0.025); (b) (pr, pa) = (0.25, 0); and (c)
(pr, pa) = (0.25, 0.025).

16



6 The Effect of the Network Structure on Social Accep-
tance

The next task is to investigate how social acceptance of the stigmatized is influenced
by the structure of agents’ social networks. To lay the groundwork, we begin by
reviewing some previous findings on network effects and diffusion, and then relate
our model to past models.

It is well-accepted that network structure is a key determinant of diffusion pat-
terns. Granovetter (1973) identified the strength of weak links whereby agents may
benefit from the paucity of mutual friends in their job search as otherwise distant
nodes in the network can provide new information that improves the rate of diffu-
sion: "[W]hatever is to be diffused can reach a larger number of people, and traverse
greater social distance (i.e., path length), when passed through weak ties rather
than strong."21 The "strength of weak ties" notion was given further support when
Watts and Strogatz (1998) —WS1998 from hereon — discovered the "small-world"
networks in which the rate of diffusion of information significantly increased with a
small number of long random ties. However, Centola and Macy (2007), hereafter
CM2007, provided an important qualification to that finding. Previous work, includ-
ing WS1998, considered settings in which an agent’s exposure to one other agent
exhibiting some conduct was suffi cient for that conduct to then be adopted. Re-
ferred to as a "simple contagion," CM2007 re-examined the model of WS1998 with a
"complex contagion," which means that adoption of some conduct requires exposure
to two or more agents exhibiting that conduct. Of particular note, CM2007 found
that the proportion of random (non-local) ties has a non-monotonic effect when the
contagion is complex. While a few randomized ties can improve propagation, more
than that can significantly harm diffusion. (This result is explained below.)

Our model belongs to this class of social diffusion models. The structural para-
meter for the social networks, q, is equivalent to the proportion of random ties in
WS1998 and CM2007. When q = 0, all of the connections in an individual’s network
come from her own neighborhood N(i) (though within the neighborhood they are
randomly chosen). More generally, a proportion q of an agent’s network connections
is drawn (randomly) from the population-at-large outside of the agent’s immediate
neighborhood. This is equivalent to the the method of "random re-wiring of links"
as implemented in WS1998 and CM2007. Figure 9 offers a visualization of the global
social network in our model for randomly constructed networks for q ∈ {0, 0.05, 0.1,
0.15}. When q = 0, the network is a long circular chain connecting the individual
members of the population through their strictly local networks. As q rises, some
of the links to one’s own neighbors are replaced with random links to those external
to the neighborhood. As a result, the tight circular property of the chained net-
work gradually weakens and we observe an increasing number of direct links between
agents positioned far apart from one another.

In line with WS1998, there are two distinct channels through which the random-
ness parameter q influences diffusion via social networks in our model. First, the

21Granovetter (1973), p. 1366.
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extent of random ties in the social networks affects the average length of the shortest
paths between any two agents in the population. Let dij denote the length of the
shortest path between agent i and another agent j, where the "length of a path" is
defined as the number of edges that the path contains.22 By taking an average of the
path lengths between all pairs of agentes i, j ∈ M, i 6= j, we compute the mean path
length, PL(q):

PL(q) =
1

m

∑
i∈M

 1

m− 1
∑

j∈M−{i}
dij

 . (9)

The dependence of the path length on q is because the networks are influenced by q.
Second, the random ties affect the local clustering coeffi cient, which is a measure

of the extent to which one’s friends are also friends of each other. More specifically,
for a given agent i, the local clustering coeffi cient is:

LCCi(q) =
number of pairs of i’s friends, (j, k), such that j ∈ L(k) and k ∈ L(j)

number of pairs of i’s friends
.

(10)
Averaging over the population, we obtain the mean local clustering coeffi cient :

LCC(q) =
1

m

∑
i∈M

LCCi(q). (11)

Based on the networks generated from the 64 replications, PL(q) and LCC(q)
were computed for all q ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.3, ..., 1}. Consistent with the results
reported in WS1998, PL(q) and LCC(q) are monotonically decreasing in q. In Figure
10, PL(q)/PL(0) and LCC(q)/LCC(0) are plotted with respect to q, where, for
purposes of comparison, the measures are normalized by their values at q = 0. The
intuition behind the declining shape of the two curves is as follows. First, when q = 0,
an individual’s network consists of connections drawn strictly from within her local
neighborhood. While any two agents in the population can typically be connected
through a chain of local networks, the path length tends to be high on average. As
q is raised, the social networks become more cross-cutting due to the random links;
agents positioned spatially far apart from each another can be connected without
going through a long chain of intermediate agents. Hence, mean path length is
reduced. Second, the rise in distant links from an increase in q makes it less likely
that an agent’s direct links are also directly connected; that is, it becomes less likely
that members of an agent’s network are also members of each other’s networks.
With strictly local networks (q = 0), an agent is likely to share many links with
her neighbors as their neighborhoods will extensively overlap; in other words, their
friends are likely to know each other. As the network becomes increasingly random

22The path may entail going through several individuals. For instance, if i and j know each other
(i.e., they are in each other’s network), then dij = 1. If i and j do not know each other but they
both know another agent k, then dij = 2, so i knows k and k knows j. Typically, there are many
different paths that can be taken to connect i and j. The "path length" is the shortest of all feasible
paths.
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and global, the mutual ties become weaker and this is reflected in LCC(q) declining
in q.

WS1998 used the rapidly declining average path length as an explanation for their
"small-world" network result: It only takes a few randomly connected (weak) links
to substantially reduce the path length, and that speeds up the diffusion process.
Note that PL(q)/PL(0) drops sharply with respect to q in Figure 10. However,
CM2007 showed that this result only holds for simple contagions. When the contagion
is complex, an agent needs to have multiple exposures to the conduct before it is
adopted. If there is a high degree of local clustering, it becomes more likely that when
an agent’s link has the conduct then so does another link for that agent because those
two links are likely to be connected and thereby influence each other. An increase in
q then has two countervailing effects on the diffusion process when the contagion is
complex: 1) it reduces the mean path length, which speeds up the diffusion ("small-
world" effect) required for adoption; and 2) it reduces the local clustering coeffi cient,
which weakens the extent of exposure necessary to exceed the threshold for adoption
("shared-friends" effect).

Figure 10 shows that the two countervailing forces have a differential impact on
the diffusion process as q is raised. Note that the path length declines steeply in the
beginning and then very slowly after that. In contrast, the local clustering coeffi cient
declines much more gradually. The result of CM2007 on complex contagions may
be understood as the result of the small-world effect dominating when q is low, and
the shared-friends effect dominating when q is suffi ciently high.23 When q is low, the
steep drop in PL(q) (which promotes diffusion) dominates the mild decline in LCC(q)
(which hinders diffusion); the marginal gain from the strengthened small-world effect
exceeds the marginal loss from the weakened shared-friends effect. However, the steep
drop in PL(q) is restricted to low values of q. When q rises further, the additional
decline in PL(q) is very small, almost becoming negligible for high values of q. In
that case, the shared-friends effect is increasingly dominant.

Our model enriches the preceding models by allowing for heterogeneous conta-
gions. CM2007 assumed all agents have the same threshold, while the agents in
our model have different thresholds depending on their types. The compassionists
make their acceptance decisions purely on the observation of stigmatized agents in
their networks. For the average network size of 20, exposure to a single revealed
stigmatized agent is suffi cient for a compassionist to accept; hence, the contagion for
compassionists is simple. Conformists, on the other hand, base their acceptance on
observing multiple acceptances by others in their networks. For an average network
of 20 links, a conformist will adopt acceptance only when exposed to at least six
agents who are accepting of the stigmatized; hence, the contagion is complex. As w
is increased, the fraction of conformists rises which means diffusion is more dependent

23 It should be noted that the analysis carried out in CM2007 (as well as WS1998) is restricted
to those cases where the entire population reaches full adoption over the relevant horizon. Their
interest is in measuring the "time to saturation" of the population. In contrast, we focus on the
rate of acceptance (or adoption), allowing for the possibility that the steady-state may not involve
saturation.
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on the complex contagion.24 Also note that the contagion for stigmatized agents is
complex as they require at least eight agents (for a network with 20 links) to have
adopted acceptance before they reveal.

To see the impact of q on the rate acceptance of the stigmatized, Table 5 and
Figure 11 report the mean rate of acceptance for a range of values for q and w, given
the initial conditions of (pr, pa) = (0.25, 0.025). All other parameters are at their
baseline values. The next property can be inferred from these results.25

Property 3: Given a suffi cient number of compassionists in the population (i.e., w
is not too high), a rise in the fraction of random ties in social networks tends
to increase the rate of social acceptance. When there are few compassionists
(i.e., w is high), a rise in the fraction of random ties lowers the rate of social
acceptance.

As an example to illustrate the property, compare w = 0 (all compassionists)
and w = 0.9 (almost all conformists) as q is raised from 0 to 0.1 so that some
weak ties are introduced into networks. The rate of acceptance rises from 0.557 to
0.728 for w = 0, but falls from 0.561 to 0.174 for w = 0.9. When there are mostly
conformists, the diffusion in our model is largely driven by a complex contagion,
for which the shared-friends effect is dominant. In that case, moving to a network
structure with weak ties reduces the extent of multiple exposure to acceptance and
thereby leads to less acceptance by conformists. When w is instead low, the diffusion
mechanism is dominated by the simple contagion of compassionists. Now, the small-
world effect is crucial and, as a result, some weak ties (q is positive but low) promotes
more exposure to revealed stigmatized agents throughout the population and thus
encourages acceptance among compassionists.

It is also worth highlighting Property 2 in Figure 11. Note the steep drop in
acceptance in response to a small increase in the fraction of conformists.

Summing up, the insularity of social networks tends to promote tolerance in a
society that is dominated by orthodoxy. It is more likely that the insularity will
generate pockets of conformists who switch to acceptance because there are many
common connections among them who are accepting. (Though it is important to
remember from Section 5 that having some people motivated by compassion, rather
than orthodoxy, is crucial for initiating that process.) If instead society is full of
people who are more driven by caring for those in their networks then tolerance is
more widespread when there is less insularity of networks.

7 Conclusion

The first contribution of this paper is providing a model that formalizes the conceptual
framework of Goffman (1963) within a larger social structure in which different actors
24When a compassionist has more than 20 links then she requires exposure to at least two revealed

stigmatized agents. Though that is then a complex contagion, the more general point is that the
contagion associated with conformists is more complex than that associated with compassionists.
25That the results are robust to initial conditions is shown in the Online Appendix for other values

of pr and pa. (See Appendix B.)
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interact through their social networks. This approach allows one to explore the micro-
to-macro link that has been lacking in the stigma literature and do so in an explicit
and systematic way. The second contribution is using this model to develop new
insight into the determinants of a norm of tolerance with regards to those who possess
an attribute that may be a source of stigma.

The model offered two innovations to previous models of diffusion, both of which
are motivated by the object of diffusion being acceptance of a person as opposed
to believing an idea or adopting a practice. As the object is a person, we allowed
the adoption decision of some agents (compassionists) to be driven by sympathy
for the stigmatized; they are accepting of them when their social networks include
them. However, that acceptance requires knowing that the stigmatized are in their
social networks. That leads us to the second innovation which is to allow those
with the attribute to decide whether to reveal it or keep it hidden. Adding in the
conforming type of agent typically present in diffusion models - who are accepting
of the stigmatized when enough others in their social networks are accepting - the
model embodies a triadic dynamic among the stigmatized agents, the compassionists,
and the conformists.

Exploring this framework, the paper offers two new findings regarding when a
norm of tolerance prevails. One finding is that the maximal rate of acceptance is
achieved when the population includes both those driven by sympathy for the stig-
matized and those driven by the desire to conform. Some compassionists are needed
to achieve a critical mass of acceptance that can then induce conformists to begin
to accept. At the same time, some conformists are needed to break the coordina-
tion failure that can occur between compassionists - who are not accepting because
the stigmatized agents in their social networks are hidden - and stigmatized agents
- who are remaining hidden because compassionists (as well as conformists) are not
accepting.

A second finding is that the relationship between the insularity of social networks
and a norm for tolerance depends on the disposition of agents in society. If compassion
for the stigmatized is dominant then less insular networks contributes to the promo-
tion of a norm of acceptance. That result is driven by the "small-worlds" effect of
Watts and Strogatz (1998). However, if conformity is dominant then more insularity
is desirable. That result comes from the complexity of the contagion for conformists,
as defined in Centola and Macy (2007), and the importance of the "shared-friends"
effect in diffusion.

The framework presented and explored here was rather sparse in its structure.
That was intentional in order to identify some basic insight into the triadic dynamic.
It is to be emphasized that the framework is highly flexible and can encompass richer
social networks and more diverse agent types. Consider, for example, the stigma of
homosexuality. As is well documented, religion is strongly correlated with attitudes
to gays, including on issues such as same-sex marriage. One could then build social
networks by first locating churches and places of employment on the torus. With those
in place, the social networks would be constructed by attaching people to churches and
employers and making links more likely with those who attend the same church and
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work for the same employer. There could be differential rates of church attendance
in the space so as to capture, for example, regional differences in the United States.
While we had some agents driven solely by sympathy and others by conformity, richer
forms of heterogeneity could be encompassed. An agent could adopt acceptance when
a weighted average of the fraction of revealed stigmatized agents and the fraction of
accepting agents in her social network exceeds some threshold. With such a rich
structure, one could make predictive statements about the change in acceptance of
gays over time and space. What can we say about the geographic spread of tolerance?
How will it be correlated with agents’traits? What would happen in a world without
churches? What types of events will tend to disrupt a norm of intolerance? Can we
explain the recent rapid acceptance of same-sex marriage in the United States? The
framework is flexible enough to take on many relevant questions related to the social
dynamics of stigma.
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Table 1: Parameter Values

Para. Description Baseline All Values

m population size 10, 000 10, 000
n range of the Moore neighborhood, N(i) 3 3
s prop. of the population with stigma 0.1 0.1
1− s prop. of the population w/o stigma 0.9 0.9
w prop. of the normals who are conformists 0.3 {0, 0.1, ..., 1}
1− w prop. of the normals who are compassionists 0.7 {0, 0.1, ..., 1}
q prob. i’s network link is from M − i−N(i) 0 {0, 0.05, ..., 1}
1− q prob. i’s network link is from N(i) 1 {1, 0.95, ..., 0}
l mean network size 20 20
pr prop. stigmatized agents revealed at t = 0 0.15 {0.15, 0.25}
pa prop. normal agents accepting at t = 0 0 {0, 0.025, 0.05, 0.1}
τS disclosure threshold for stigmatized agents 0.4 {0.4, 0.5}
τCNF acceptance threshold for conformists 0.3 {0.3, 0.35, 0.4}
τCMP acceptance threshold for compassionists 0.05 {0.05, 0.075}
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Table 2: Numbers of disclosures and acceptances by type
(w = 0.3; Run #21)

time (t)
Disclosure by S
1,000 agents

Acceptance by CMP
6,300 agents

Acceptance by CNF
2,700 agents

0 150 (0.15) 0 (0) 0 (0)
1 150 (0.15) 978 (0.16) 0 (0)
2 165 (0.17) 978 (0.16) 169 (0.06)
3 185 (0.19) 1,042 (0.17) 273 (0.10)
4 209 (0.21) 1,118 (0.18) 375 (0.14)
5 241 (0.24) 1,229 (0.20) 491 (0.18)
6 277 (0.28) 1,366 (0.22) 585 (0.22)
7 309 (0.31) 1,512 (0.24) 673 (0.25)
8 337 (0.34) 1,623 (0.26) 790 (0.29)
9 365 (0.37) 1,746 (0.28) 859 (0.32)
10 385 (0.39) 1,863 (0.30) 931 (0.34)
11 408 (0.41) 1,963 (0.31) 1,016 (0.38)
12 429 (0.43) 2,062 (0.33) 1,092 (0.40)
13 457 (0.46) 2,151 (0.34) 1,157 (0.43)
14 473 (0.47) 2,273 (0.36) 1,213 (0.45)
15 495 (0.50) 2,336 (0.37) 1,275 (0.47)
· · · ·
· · · ·
· · · ·
43 724 (0.72) 3,525 (0.56) 1,933 (0.72)
44 725 (0.73) 3,538 (0.56) 1,937 (0.72)
45 726 (0.73) 3,540 (0.56) 1,937 (0.72)
46 726 (0.73) 3,545 (0.56) 1,937 (0.72)
· · · ·
· · · ·
· · · ·
300 726 (0.73) 3,545 (0.56) 1,937 (0.72)
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Table 3: Quantiles of the steady-state rates of acceptance
by the Normals
(64 replications)

w max 75% median 25% min
0 0.408 0.335 0.306 0.280 0.245
0.1 0.486 0.423 0.378 0.341 0.262
0.2 0.595 0.515 0.488 0.457 0.348
0.3 0.751 0.675 0.627 0.568 0.444
0.4 0.871 0.849 0.837 0.806 0.701
0.5 0.897 0.888 0.885 0.881 0.841
0.6 0.915 0.911 0.909 0.907 0.899
0.7 0.939 0.933 0.931 0.929 0.925
0.8 0.958 0.955 0.953 0.033 0.029
0.9 0.976 0.016 0.015 0.014 0.013
1 0 0 0 0 0
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Table 4: Fraction of agents accepting at t = 300
(q = 0)

(a) Compassionists
x : proportion of type-S in the networks of CMPs

w
0 ≤ x
< .05

.05 ≤ x
< .1

.1 ≤ x
< .15

.15 ≤ x
< .2

.2 ≤ x
< .25

.25 ≤ x
< .3

.3 ≤ x
< .35

0 0 .272 .414 .513 .584 .647 .688
0.1 0 .355 .493 .588 .655 .707 .754
0.2 0 .475 .609 .689 .738 .788 .831
0.3 0 .657 .755 .810 .843 .871 .891
0.4 0 .918 .952 .965 .973 .981 .987
0.5 0 .995 .997 .998 .999 .999 .999
0.6 0 1 1 1 1 1 1
0.7 0 1 1 1 1 1 1
0.8 0 .717 .748 .775 .802 .819 .828
0.9 0 .153 .245 .324 .396 .483 -*
1 - - - - - - -

(b) Conformists
x : proportion of type-S in the networks of CNFs

w
0 ≤ x
< .05

.05 ≤ x
< .1

.1 ≤ x
< .15

.15 ≤ x
< .2

.2 ≤ x
< .25

.25 ≤ x
< .3

.3 ≤ x
< .35

0 - - - - - - -
0.1 .365 .434 .489 .536 .571 .601 .611
0.2 .511 .568 .617 .648 .671 .692 .735
0.3 .701 .734 .765 .790 .812 .825 .846
0.4 .938 .950 .959 .967 .970 .978 .975
0.5 .997 .998 .998 .998 .999 .999 .999
0.6 1 1 1 1 1 1 1
0.7 1 1 1 1 1 1 1
0.8 .688 .688 .688 .688 .689 .689 .690
0.9 .063 .063 .063 .063 .063 .063 .065
1 0 0 0 0 0 0 0
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Table 5: Steady-state rate of acceptance (average over 64 replications)
(pr, pa) = (0.25, 0.025); (τS , τCNF , τCMP ) = (0.4, 0.3, 0.05)

w
q 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.55652 0.63946 0.72370 0.80371 0.85660 0.88532 0.90850 0.93136 0.95434 0.56099 0
0.05 0.65004 0.73233 0.79887 0.83637 0.86231 0.88564 0.90900 0.93185 0.95481 0.26363 0
0.1 0.72811 0.78072 0.81328 0.83909 0.86365 0.88570 0.90786 0.93163 0.91239 0.17434 0
0.15 0.75956 0.78935 0.81549 0.83959 0.86236 0.88490 0.90830 0.93173 0.78507 0.07009 0
0.2 0.76588 0.79279 0.81610 0.83991 0.86346 0.88570 0.90859 0.93109 0.47603 0.02525 0
0.3 0.76916 0.79380 0.81713 0.84042 0.86274 0.88570 0.84668 0.29969 0.05198 0.02522 0
0.4 0.76989 0.79397 0.81697 0.83927 0.85289 0.63815 0.11568 0.08006 0.05128 0.02515 0
0.5 0.76273 0.79437 0.81680 0.84003 0.56909 0.14822 0.10854 0.07790 0.05109 0.02509 0
0.6 0.74844 0.79387 0.77090 0.71478 0.19507 0.14206 0.10724 0.07755 0.05045 0.02494 0
0.7 0.66365 0.76087 0.78133 0.57864 0.19197 0.13989 0.10511 0.07730 0.05067 0.02497 0
0.8 0.67934 0.71929 0.76431 0.55145 0.18944 0.13990 0.10517 0.07715 0.05027 0.02498 0
0.9 0.68884 0.72859 0.71039 0.44858 0.17570 0.13838 0.10613 0.07704 0.05062 0.02491 0
1 0.67126 0.73641 0.75468 0.42420 0.17524 0.13957 0.10619 0.07664 0.05050 0.02482 0
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Figure 1: Moore Neighborhood of Range 3 on a Torus
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Figure 3: Time paths of the acceptance and disclosure rates

(single replication and mean of 64 independent replications)
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(pr=0.15; pa=0; τS=0.4; τCNF=0.3; τCMP=0.05)
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Figure 6: Fractions of the CMPs and CNFs that accept (w = 0.9)
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Figure 7: Fractions of the CMPs and CNFs that accept (w = 0.8, 0.7, 0.6)



(a) pr = 0.15; pa = 0.025
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(c) pr = 0.25; pa = 0.025
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Figure 8: Steady-state acceptance rates

with varying initial conditions, (pr, pa)
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Figure 9: Visualization of Networks for All Agents
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Figure 10: Effect of q on Path Length and Clusterning Coefficient
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(pr, pa) = (0.25, 0.025); (τS, τCNF, τCMP) = (0.4, 0.3, 0.05)


