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The authors explore the evolution of the structure and performance
of a social network in a population of individuals who search for
local optima in diverse and dynamic environments. Individuals
choose whether to innovate or imitate, and in the latter case, from
whom to learn. The probabilities of these possible actions respond
to an individual’s past experiences using reinforcement learning.
Among some of the authors’ more interesting findings is that a
population’s performance is not monotonically increasing in either
the reliability of the communication network or the productivity of
innovation.

INTRODUCTION

The acceleration of scientific progress in 17th-century Western Europe is
often attributed to the founding of learned societies and to improved
communication among contemporary researchers: “Here was a widely
dispersed population of intellectuals, working in different lands, using
different vernaculars—and yet a community. What happened in one place
was quickly known everywhere else, partly thanks to a common language
of learning, Latin; partly to a precocious development of courier and mail
services; most of all because people were moving in all directions. In the

1 The comments of Rich Burton, Jon Harford, Nicolaj Siggelkow, the AJS referees,
seminar participants at DePaul, and conference participants at the 2002 CASOS Con-
ference (Carnegie Mellon) and the 2004 SCE Workshop on Complex Behavior in
Economics (Aix-en-Provence, France) are gratefully acknowledged as are general dis-
cussions on the topic of networks with Rob Axtell and Steve Durlauf. This research
is supported in part by the National Science Foundation (grant SES-0078752). Direct
correspondence to Myong-Hun Chang, Department of Economics, Cleveland State
University, Cleveland, Ohio, 44115. E-mail: m.chang@csuohio.edu
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seventeenth century, these links were institutionalized . . . in the form of
learned societies with their corresponding secretaries, frequent meetings,
and periodical journals” (Landes 1998, pp. 204–5). The emergence of such
formal and informal networks of scientists, triggered by improvements in
communication technology and transportation, marked the beginning of
the institutionalization of scientific investigation which eventually paved
the way to the Industrial Revolution.

The latter half of the 20th century has seen another major explosion
in the formation of such networks and informal communities. Thanks to
the advent of the Internet and the World Wide Web, the time delay in
acquiring information has shrunk from weeks (or at best, days and at
worst, months) to minutes. In the communities of research scientists, learn-
ing what others are working on and what methods they are deploying
previously required mailing letters requesting working papers, frequent
trips to professional meetings and workshops, and laborious search in the
dust-covered library stacks.2 All this has changed dramatically in recent
years. A letter sent using the postal service is replaced with an e-mail
which arrives at the desktop of the other party within seconds, or by
directly downloading the paper from the individual’s Web site. What is
more, there exist ongoing projects that facilitate dissemination of research
over the Internet via a decentralized database of working papers, journal
articles, and software components.3 Downloading a working paper is now
merely a matter of pointing a cursor and clicking. The library, a physical
institution that was once the hallmark of academic community, is grad-
ually disappearing into the network of connected computers which allow
us to search, check out, and read material at our desktop PCs.

The 300 years of separation notwithstanding, these two episodes share
a common element: the prominent role played by the social learning net-
work in achieving and sustaining scientific progress at the macrolevel
from the chance occurrences of local innovations scattered across wide
geographic areas. Furthermore, these issues are not unique to scientific
processes but also apply to markets and organizations, for what at work

2 See Liberman and Wolf (1997) who investigate knowledge flows from conferences.
3 RePEc (Research Papers in Economics) at http://repec.org, an international collab-
orative project in economics, links various sources of research publications in over 30
countries and enable their distribution via electronic media. As of November 2002,
they report that the “RePEc database holds over 176,000 items of interest, over 85,000
of which are available online.” Also, as of November 2002, SSRN (Social Science
Research Network) at http://www.ssrn.com claims to have in its eLibrary an abstract
database of over 44,900 working papers and forthcoming papers as well as an electronic
paper collection of over 25,400 downloadable full-text documents.
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is quite fundamental—finding better solutions to a stream of problems.4

Given this relationship between local innovations and social learning via
community networks, what are the implications for an individual’s de-
cision to engage in independent innovation or to access the social network
for observing the ideas of others? If the networks themselves are an out-
come of interactive choices among individuals as to whom to observe and
whom to ignore, what are the determinants of their emergent structure?
Will an improvement in communication technology be sufficient to gen-
erate superior performance at the individual and the community level, or
are there other complementary factors essential for a social network to
realize these potential gains? Our objective is to explore these issues by
building an agent-based computational model of an evolving social net-
work with potentially innovative individuals and analyzing its emergent
structure as well as its long-run performance.

Given the richness of these processes, the model we develop is stylized
and is designed to encompass three generic features of these knowledge
processes. First, agents are faced with problems to solve which we model
as an effort to achieve a local optimum in the space of possible things
that one can do.5 This optimum is uniquely defined for each individual,
where similarity among optima is to be interpreted as similarity in the
problems being solved. Second, agents must choose how to allocate their
effort between individual learning (innovation) and social learning (imi-
tation). When they engage in learning from others, an agent decides from
whom to learn, which takes the form of establishing links in a social
network. These choices are made probabilistically, and the probabilities
are adjusted over time based on personal experience. This modeling struc-
ture allows us to examine the emergent structure of the social network
in terms of how observation probabilities are distributed across individ-
uals as well as to track the evolving choice between innovation and im-
itation for each individual. Our model also captures the fact that the

4 See Podolny, Stuart, and Hannan (1996) for an analysis of knowledge production via
a network in the semiconductor industry.
5 In defense of this view, we appeal to Kuhn’s (1962) interpretation of “normal science
as puzzle-solving” in which a scientist is someone driven by the desire to search for a
solution (a goal yet unknown) to the problem at hand: “Bringing a normal research
problem to a conclusion is achieving the anticipated in a new way, and it requires the
solution of all sorts of complex instrumental, conceptual, and mathematical puzzles.
The man who succeeds proves himself an expert puzzle-solver, and the challenge of
the puzzle is an important part of what usually drives him on” (Kuhn 1962, p. 36).
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actual outcomes of these efforts tend to have a substantial random aspect.6

Third, knowledge creation and diffusion occurs in the context of a chang-
ing environment as represented by stochastic movement in optima. This
feature captures the fact that individuals do not typically solve one prob-
lem once and for all, but instead must solve a sequence of problems which,
to varying degrees, can at least partially be solved using solutions to
previous problems.

This model is used to explore how the innovativeness of individuals
and the reliability of the communication technology impact network struc-
ture and performance, and how those relationships depend on the char-
acteristics of the environment. Several interesting properties emerge.
When communication technology is sufficiently poor, the results are quite
intuitive. For example, performance is improved by enhancing the reli-
ability of communication and making agents more productive in inno-
vation. However, when communication is sufficiently efficacious, further
enhancement of it can actually be detrimental to performance. The in-
tuition is that the increased social learning from a more reliable network
leads to local homogenization of agents in terms of their solutions to
problems. This lack of diversity within the social network results in a
population of agents who are ill equipped to adapt to a changing envi-
ronment. Second, when reliability is of moderate quality, a rise in the
productivity of innovation can be deleterious to average performance in
the population. The key insight here is that imitating others is both a
social good and a social detriment. Engaging in imitation fails to add to
the stock of knowledge, but it does serve to spread worthwhile ideas.
Thus, an agent who imitates is improving the value of the network, which
can enhance collective performance. When network reliability is mod-
erate, agents may be engaging in too much individual learning from a
societal perspective; it might be better to tap into the network to pass
along ideas and develop more useful links (which can only be achieved
through experience). Making agents more innovative induces them to use
the network even less and thereby exacerbates the problem of a poorly
developed network and inadequate sharing of ideas. A third property is
that when network reliability is low, the social network is less structured
when agents are more innovative. The simple reason is that they choose

6 See Mokyr (1990, p. 152): “Over most of human history, technological change did not
take place, as it does today, in specialized research laboratories paid for by research
and development budgets and following strategies mapped out by corporate planners
well-informed by marketing analysts. Technological change occurred mostly through
new ideas and suggestions occurring if not randomly, then certainly in a highly un-
predictable fashion. Demand conditions may have affected the rate at which these
ideas occurred, and may have focused them in a particular direction, but they did not
determine whether a society would be technologically creative or not.”
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to engage in more individual learning. Since they then access the network
less, they are less effective in developing worthwhile links. When network
reliability is high, however, those two measures—the structure of the social
network and the capacity for innovation—move together. This is driven
by the fact that the quality of a network, in terms of the population’s
possessing a diverse array of useful ideas, rises with the productivity of
innovation. But that quality cannot be adequately tapped if reliability is
low. A more structured network emerges when both the reliability and
the quality (which depends on the capacity for innovation) of the network
are high. While innovation and imitation are substitutes at the individual
level, they are complements at the population level through the mecha-
nism of social learning.

Related Work

While there is a wealth of research exploring the implications of a network,
there is much less formal theoretical work that endogenously derives social
learning networks. An early exception is the work of Carley (1990, 1991).
She develops a simulation model in which interagent interaction leads to
shared knowledge, which then determines the likelihood of further in-
teractions. Her model differs from ours in two crucial ways. First, she
concentrates purely on the social network as the learning mechanism;
individuals do not innovate. The dynamic behavior of the network is then
solely driven by the endowed differences in knowledge across individuals.
Second, she specifies the likelihood of interaction between two agents as
being determined directly by the amount of information they share; the
larger the set of common information, the higher the probability that they
will interact again. In contrast, our model takes a more bottom-up ap-
proach. We assume that the agents are motivated by private goals. For
each agent, the probability of observing another agent is adjusted on the
basis of the past value of other agents’ information in attaining her goal.
This approach highlights our perspective that the likelihood of an inter-
action between two individuals is an emergent outcome and should be
modeled as such.

More recent work is based on the specification of goals for agents, and
it is the striving for attainment of these goals (“utility maximization”) that
determines a network’s structure. Jackson and Wolinsky (1996) charac-
terize the properties of a stable network—one in which no agent wants
to create or destroy links—while the dynamics of network formation is
explored in Bala and Goyal (2000), Hummon (2000), and Jackson and
Watts (2002). They assume agents adaptively adjust their networks so as
to improve performance. Though utilizing a distinct approach, a prede-
cessor to these discussions is Huberman and Hogg (1995), but it differs
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from our model in several substantive ways. First, the payoff to an agent
from a given network is exogenously fixed, while in our model, it evolves
with what an agent can learn from other agents. Second, it does not
consider an agent’s choice of innovation versus imitation, but focuses
exclusively on network structure. Third, Huberman and Hogg’s study
does not allow agents to adapt their search process in response to expe-
rience, while in our model, this is done through reinforcement learning.

THE MODEL

Agents, Tasks, Goals, and Performance

Consider a social system consisting of M individuals. Each individual
engages in an operation that can be broken down intoi � {1, 2, . . . , M}

N separate tasks. There are several different methods that can be used
for each task. The method chosen by an agent for a given task is rep-
resented by a sequence of d bits (0 or 1) such that there are possibled2
methods available for each task. In any period t, an individual i is then
fully characterized by a binary vector of dimensions. Denote it byN 7 d

so that andNd 1 N h h,1z (t) � {0, 1} z (t) { (z (t), . . . , z (t)) z (t) { (z (t), . . . ,i i i i i i

is individual i’s chosen method in task .h,d dz (t)) � {0, 1} h � {1, . . . , N}i

An example with and is given below:N p 24 d p 4

task (h) #1 #2 #3 . . . #24
task methods h(z (t)) :i 1101 0010 1001 . . . 1110

Note that there are 16 (p 24) different methods or bit configurations for
each task. What is shown above for a given task represents a particular
method chosen out of the 16 available methods. Given that the operation
is completely described by a vector of 96 ( ) bits, there are thenp 24 # 4
296 possible bit configurations for the overall operation.

In measuring the degree of heterogeneity between two methods vectors,
and , we shall use “Hamming distance,” which is defined as the numberz zi j

of positions for which the corresponding bits differ:

N d

h,k h,kD(z , z ) { Fz � z F. (1)��i j i j
hp1 kp1

Each individual possesses a goal vector which may be different from
one period to the next. Let be the goal vector of agent i inNdẑ (t) � {0, 1}i

period t. That can differ across agents implies diversity in agents’ẑ (t)i

problems, or alternatively, in their environments, so that the optimum
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differs. The degree of turbulence in task environments is captured by
intertemporal variability in .ẑ (t)i

The individuals are uninformed about ex ante, but engage in searchẑ (t)i

to get as close to it as possible. Given N tasks with d bits in each task
and the goal vector , the period-t performance of individual i is thenẑ (t)i

measured by , wherep (t)i

ˆp (t) { N 7 d � D(z (t), z (t)). (2)i i i

The performance of a social system is measured by how close the indi-
viduals are to their respective goals. We let denote the population-p̄(t)
average performance in period t,

M1
p̄(t) { p (t). (3)� iM ip1

Modeling Innovation and Imitation

In any given period, an individual’s search for an optimum is carried out
through two distinct mechanisms, innovation and imitation. Innovation
occurs when an individual independently discovers and considers for im-
plementation a random method for a randomly chosen task. Imitation is
when an individual selects someone and then observes and considers for
implementation some randomly chosen task currently deployed by that
agent.7 Though a single act of innovation or imitation is assumed to be
a single task, this is without loss of generality. If we choose to define a
task to include dimensions, then the case of a single act of innovation′d
or imitation involving two tasks can be handled by setting .8 In′d p 2d
essence, what we are calling a “task” is defined to be the unit of discovery
or observation. The actual substantive condition is instead the relationship
between d and N, as an agent’s innovation or imitation involves a smaller
part of the possible solution when is smaller.d/N

Whether obtained through innovation or imitation, an experimental
method is actually adopted if and only if its adoption gets the agent closer
to her goal by lowering the Hamming distance between her new methods

7 It may be useful to think of innovation and imitation as being analogous to mutation
and crossover, respectively, in evolutionary biology.
8 There is a restriction in that an agent only has the option of adopting all d dimensions
or none.



American Journal of Sociology

944

vector and her goal vector. For clarity, consider the following example
with and :N p 5 d p 2

agent i’s goal vector: 01F10F10F01F01

agent i’s current methods vector: 01F01F11F00F11

The relevant operation has five tasks. In each task, there are four distinct
methods that can be tried: (0,0), (0,1), (1,0), and (1,1). The Hamming
distance between i’s current methods vector and her goal vector is then
five. Suppose i observes the method used for task 4 by another agent j
( ) whose methods vector is:( i

agent j’s current methods vector: 10F10F11F01F01

Since j’s method in task 4 is (0,1), when it is tried by agent i, her exper-
imental methods vector becomes:

agent i’s experimental methods vector: 01F01F11F01F11

which then reduces the Hamming distance to i’s goal to four, hence, the
experimental methods vector becomes i’s new methods vector.

Endogenizing Choices for Innovation and Imitation

In each period, an individual may engage in either innovation or imitation
by using the network. Exactly how does an individual choose between
innovation and imitation, and if she chooses to imitate, how does she
decide whom to imitate? We model this question as a two-stage stochastic
decision process with reinforcement learning. Figure 1 describes the timing
of decisions in our model. In stage 1 of period t, individual i is in possession
of the current methods vector, , and chooses to innovate with prob-z (t)i

ability and imitate with probability . It she chooses to in-q (t) 1 � q (t)i i

novate then, with probability , she comes up with an idea which is ainm i

randomly chosen task, , and a randomly chosen method,h � {1, . . . , N}
, for that task such that the experimental method vector is
′h ′z z (t) {i i

. is a parameter that controls the
′1 h�1 h h�1 N in(z (t), . . . , z , z , z , . . . , z (t)) mi i i i i i

productivity of an agent’s innovation. This experimental vector is adopted
by i if and only if its adoption lowers the Hamming distance to her current
goal vector, . Otherwise, it is discarded:ẑ (t)i

′ ′ ˆ ˆz (t) if D(z (t), z (t)) ! D(z (t), z (t))i i i i iz (t � 1) p (4)i ′{ ˆ ˆz (t) if D(z (t), z (t)) ≥ D(z (t), z (t)).i i i i i

Alternatively, with probability , the individual fails to generate anin1 � m i

idea, in which case .z (t � 1) p z (t)i i

Now suppose individual i chooses to imitate in stage 1. Given that she



Fig. 1.—Decision sequence of individual i in period t
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decides to imitate someone else, she taps into the network to make an
observation. Tapping into the network is also a probabilistic event, in
which with probability , the agent is connected to the network, whileimm i

with probability , the agent fails to do so. measures the reli-im im1 � m mi i

ability of the communication technology and thereby the network. An
agent that is connected then enters stage 2 of the decision process in which
another agent must be selected to be studied and possibly imitated. Let

be the probability with which i observes j in period t sojp (t)i

for all i. If agent i observes another agent l, the observationj� p (t) p 1ij(i

involves a randomly chosen task h and the current method used by agent
l in that task, . Leth ′′ 1 h�1 h h�1z (t) z (t) p (z (t), . . . , z (t), z (t), z (t), . . . ,l i i i l i

be the experimental vector. Adoption or rejection of the observedNz (t))i

method is based on the Hamming distance criterion:

′′ ′′ ˆ ˆz (t) if D(z (t), z (t)) ! D(z (t), z (t))i i i i iz (t � 1) p (5)i ′′{ ˆ ˆz (t) if D(z (t), z (t)) ≥ D(z (t), z (t)).i i i i i

If the agent fails to connect to the network, which occurs with probability
, .im1 � m z (t � 1) p z (t)i i i

The probabilities and are1 i�1 i�1 Mq (t) {p (t), . . . , p (t), p (t), . . . , p (t)}i i i i i

adjusted over time by individual agents according to a reinforcement
learning rule. We adopt a version of the experience-weighted attraction
(EWA) learning rule as described in Camerer and Ho (1999).9 Using this
rule, is adjusted each period on the basis of evolving attraction mea-q (t)i

sures, and , for innovation and imitation, respectively. Thein imB (t) B (t)i i

evolution of and follows the process below:in imB (t) B (t)i i

inB (t � 1) pi

infB (t) � 1 if i adopted a method through innovation in ti (6)in{fB (t) otherwise,i

imB (t � 1) pi

imfB (t) � 1 if i adopted a method through imitation in ti (7)im{fB (t) otherwise,i

where . Hence, if the agent chose to pursue innovation andf � (0, 1]
discovered and then adopted her new idea, then the attraction measure
for innovation increases by one after allowing for the decay factor of f

on the previous attraction level. If innovation was pursued but was un-
successful (which occurs if either she failed to generate an idea or suc-

9 For a discussion of reinforcement learning mechanisms in general, see Sutton and
Barto (2000).
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ceeded in generating an idea which turned out to be useless), or the agent
chose to pursue imitation instead, then her attraction measure for inno-
vation is simply the attraction level from the previous period decayed by
the factor f. Likewise, a success or failure in imitation in t has the same
influence on . Given and , one then derives the choiceim in imB (t � 1) B (t) B (t)i i i

probability of innovation in period t as follows:

in l(B (t))iq (t) p (8)i in l im l(B (t)) � (B (t))i i

where . A higher value for l means that a single success has morel 1 0
of an impact on the likelihood of repeating that activity (innovation or
imitation).10 The probability of imitation is, of course, . The ex-1 � q (t)i

pression in equation (8) tells us that a favorable experience through in-
novation (imitation) raises the probability that an agent will choose to
innovate (imitate) again in the future—a positive outcome realized from
a course of action reinforces the likelihood of that same action’s being
chosen again.

The stage-2 attractions and probabilities are derived similarly. Let
be agent i’s attraction to another agent j in period t. It evolvesjA (t)i

according to the rule below:

jfA (t) � 1 if i successfully imitated j in tj iA (t � 1) p (9)i j{fA (t) otherwise,i

. The probability that agent i observes agent j in period t is adjustedGj ( i
each period on the basis of the attraction measures, :j{A (t)}i j(i

j l(A (t))ijp (t) p (10)i h l� (A (t))ih(i

, , where .Gj ( i Gi l 1 0
There are two distinct sets of probabilities in our model. One set of

probabilities, and , are endogenously derived and evolve overjq (t) {p (t)}i i j(i

time in response to the personal experiences of agent i. Another set of
probabilities, and , are exogenously specified and imposed on thein imm mi i

model as parameters. They represent the state of existing technologies
and control the potential capabilities of individual agents to innovate
independently or to imitate someone else in the population via social

10 For analytical simplicity, we assume J and l to be common to all individuals in the
population.



American Journal of Sociology

948

learning.11 Of particular interest is understanding how these parameters
influence the structure and performance of the network and the rate of
innovation which we will measure by the population-average level of
innovation:

M1
q̄(t) { q (t). (11)� iM ip1

Modeling Turbulence in Task Environment

Central to the performance of a population is how it responds to an
evolving environment, or, if we cast this in the context of problem solving,
an evolving set of problems to be solved. It is such change that makes
innovation and the spread of those innovations through a social network
so essential. Change or turbulence is specified in our model by first as-
signing an initial goal vector, , to each agent and then specifying aẑ (0)i

dynamic process by which it shifts over time. In order to provide the
possibility of a substantive network’s forming, it is critical to allow for
some persistent similarity in goals across subsets of agents. This is
achieved by initially partitioning the population into a fixed number of
groups; those agents belonging to the same group tend to have more
similar goals—they are working on similar problems—than those be-
longing to different groups. As such, for any given agent, there are two
broad sources for social learning—another agent in the same group and
another agent in a different group. We expect the efficacy of social learning
to depend on the tightness of the goals within a given group relative to
the tightness of the goals between different groups. To explore this issue,
we distribute the initial goal vectors of agents in a sequence of steps
described below.

Letting , define as the set of points that areNd Nds � {0, 1} d(s, k) O {0, 1}
exactly Hamming distance k away from s. The set of points within Ham-
ming distance k of s is defined as

k

D(s, k) { w d(s, i). (12)
ip0

11 One may view these as being completely determined by available technologies outside
of our model. For instance, the size of the manuscript libraries may have limited the
magnitude of in ancient Alexandria, while the invention of the printing pressimm
presumably raised it in the 15th century: “Limits set by the very largest manuscript
libraries were also broken. Even the exceptional resources which were available to
ancient Alexandrians stopped short of those that were opened up after the shift from
script to print. The new open-ended information-flow that commenced in the fifteenth
century made it possible for fresh finding to accumulate at an ever-accelerated pace”
(Eisenstein 1979, pp. 517–18).
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is a set whose “center” is s.D(s, k)
Suppose there are J groups in the population and let us randomly

allocate the M agents into these groups. Let be the set of agents be-ak

longing to group . We define as the seed vector usedk � {1, 2, . . . , J} gk

to generate the initial goal vectors for all agents in ,ak

ẑ (0) � D(g , k) Gi � a , Gk � {1, 2, . . . , J}. (13)i k k

All agents in then have goal vectors that lie within Hamming distanceak

k of the group seed vector . The diversity among groups is modeled bygk

allowing their group seed vectors to differ. Specifically, we define a seed
vector U for the entire population and randomly select the group seed
vectors from ; the intergroup tightness of the goals is controlledD(U, X)
through X, the maximum Hamming distance between a group seed vector
and the population seed vector. Of course, the intragroup tightness of the
goals is controlled with k as described in (13). Figure 2 depicts how these
sets are related to one another. With , the four group seed vectorsJ p 4
are chosen from the set . Taking the seed vector for group 2, ,D(U, X) g2

is the set of vectors that are within Hamming distance k of .D(g , k) g2 2

The initial goal vector for individual i, , is then an element of thisẑ (0)i

set.
In period t, agent i has the current goal vector of . In periodẑ (t) t �i

, her goal stays the same with probability j and changes with probability1
. The shift dynamic of the goal vector is guided by the following(1 � j)

stochastic process. The goal in , if different from , is then chosenˆt � 1 z (t)i

iid from the set of points that lie both within the Hamming distance r

of and within Hamming distance k of the original group seed vectorẑ (t)i

. Hence, defining as the set of points from which theg L(z (t), r, g , k)k i k

goal in is chosen, we havet � 1

ˆ ˆ ˆL(z (t), r, g , k) { (D(z (t), r)� z (t)) ∩ D(g , k). (14)i k i i k

Figure 2 shows as the doubly shaded area which is theˆL(z (t), r, g , k)i k

intersection of and , minus . Consequently,ˆ ˆD(z (t), r) D(g , k) z (t)i k i

ˆ ˆz (t � 1) p z (t) with probability ji i (15){ˆ ˆz (t � 1) � L(z (t), r, g , k) with probability 1 � j.i i k

The goal vector for agent i who belongs to group k then stochastically
fluctuates while remaining within Hamming distance r of his current goal
and Hamming distance k of the group’s initial seed vector. The former
condition allows us to control the possible size of the change while the
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Fig. 2

latter condition allows us to maintain the intragroup tightness of goals.12

12 If we had instead allowed an agent’s goal to be a random walk without constraining
it to , then eventually, the distance between one agent’s goal and another agent’sD(g , k)k

goal would be independent of whether they are in the same group so that intragroup
tightness would have been lost.



Discovery and Diffusion of Knowledge

951

The lower j and the greater r, the more frequent and variable is the
change, respectively, in an agent’s goal vector. The higher k is, the lower
the intragroup goal congruence. The higher X is, the greater the intergroup
diversity in terms of their goals.

Measuring the Network Structure

A social network emerges when individuals rely on observation and im-
itation of others. A main structural characteristic of a social network is
its concentration: Does an individual learn from many or from a relatively
narrow set of other individuals? In our context, this question can be
addressed by observing the distribution of ’s. If an individual isjp (t)i

equally likely to imitate any other member of the population—so that
—there is no order in the social network as imitation isjp (t) p 1/(M � 1)i

completely (that is, uniformly) random. Alternatively, if the probability
of observing another agent is concentrated on a single individual—so that

for some j—then there is a maximal degree of order in thejp (t) p 1i

network.
An appropriate measure for this purpose is Shannon’s (1948) “entropy”

which was originally defined in the context of information theory as an
inverse measure of the information content of a message. In adapting this
measure for the context at hand, the entropy measure for the social net-
work of agent i is defined to be:

j jE (t) { � p (t) 7 log p (t). (16)�i i 2 i
Gj(i

The value for can range from a minimum of zero to a maximum ofE (t)i

.13 By taking an average of over all individuals in thelog (M � 1) E (t)2 i

population, we obtain the mean entropy of the network system:

1
E(t) { E (t). (17)� iM i

We say that the population network structure becomes more ordered
(random) as decreases (increases).E(t)

13 when the probability mass is entirely concentrated on one particular in-E (t) p 0i

dividual so that and , i. Conversely, maximal entropyk jk ( i p (t) p 1 p (t) p 0 Gj ( ki i

is attained at if observation is equally likely for all individuals,E (t) p log (M � 1)i 2

.jp (t) p 1/(M � 1) Gj ( ii
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SIMULATION DESIGN

We consider a population of 20 individuals with identical capacities for
learning:14 and Gi. There are four ( ) distinctin in im imm p m m p m J p 4i i

groups into which these agents are allocated. Assuming andN p 24
, there are 96 total bits in a methods vector.15 The initial methodsd p 4

vectors, ’s, are independent draws from . In any time periodNdz (0) {0, 1}i

t, the state variables for individual i are then , ,j inˆz (t), z (t), {A (t)} B (t)i i i Gj(i i

and . The parameters of the model are , , f, and l, whichim im inB (t) m mi

govern an individual agent’s decision making, and X, k, j, and r, which
control the environment by specifying intragroup and intergroup goal
congruence as well as the dynamics of the task environments. So that
results are not driven by the peculiarities of the initial methods vectors,
we will focus on the steady-state behavior of the social system with the
particular intent of understanding how it depends on these agent and
environment parameters. The only exceptions are that andf p 1 l p

and remain fixed. Finally, the initial attraction stocks are set at1
, , and Gi. Hence, an individualj in imA (0) p 1 Gi Gj ( i B (0) p B (0) p 1i i i

is initially equally attracted to innovation and imitation and has no in-
clination to observe one individual over another ex ante. Table 1 provides
a comprehensive list of parameters along with the set of values considered
over the course of the simulations.

In each case, the model is run for 20,000 periods. For each period,
and are collected as well as the performance of each indi-jq (t) {p (t)}i i j(i

vidual, . Population averages were then computed for these timep (t)i

series, thereby giving us , , and for each replication. For each¯ ¯E(t) q(t) p(t)
parameter configuration, we performed 20 replications—each of 20,000
periods in length—where we had fresh realization of the random variables
including the initial method vectors, the agents’ choices (recall that they
are probabilistic), the outcome of innovation and imitation, the seed vec-
tors, and agents’ optima. The time series for the relevant variables, such
as the entropy and performance measures, were then averaged over the
20 replications so as to generate the final time series reported here. Here-
inafter, , , and will denote the final time series averaged over¯¯E(t) p(t) q(t)
these 20 replications.

STRUCTURE OF NETWORKS

For the baseline simulation, we considered and so thatin imm p .5 m p .5
when in the innovation mode, an agent generates an idea 50% of the

14 The source code for the simulation design, written in C��, is available upon request
from Myong-Hun Chang.
15 The search space then contains over possibilities.287.9 # 10



TABLE 1
List of Parameters

Notation Definition Baseline Value Parameter Value Parameter Values Considered

. . . . . . . . . . . . . . . . . . . .inm Exogenous rate of innovation .5 {0, .25, .5, .75, 1}

. . . . . . . . . . . . . . . . . . . .imm Exogenous rate of imitation .5 {0, .05, .1, .15, .2, . . ., .9, .95, 1}
X . . . . . . . . . . . . . . . . . . . . . Intergroup goal diversity 16 {0, 4, 8, 16, 32, 64, 96}
k . . . . . . . . . . . . . . . . . . . . . . Intragroup goal diversity 16 {4, 8, 16, 32}
j . . . . . . . . . . . . . . . . . . . . . . Intertemporal goal stability .75 {.5, .75, .95, .99}
r . . . . . . . . . . . . . . . . . . . . . . Intertemporal goal variability 4 {1, 4, 8}
M . . . . . . . . . . . . . . . . . . . . Number of agents 20
J . . . . . . . . . . . . . . . . . . . . . . Number of groups 4
f . . . . . . . . . . . . . . . . . . . . . Attraction decay factor 1
l . . . . . . . . . . . . . . . . . . . . . Agent’s sensitivity to attraction 1

, Gi, . . . . .jA (0) Gj ( ii i’s attraction to j in t p 0 1

, Gi . . . . . . . . . . . . .inB (0)i i’s attraction to innovation in t p
0

1

, Gi . . . . . . . . . . . .imB (0)i i’s attraction to imitation in t p 0 1
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time, and when in the imitation mode, an agent observes another agent
50% of the time. The stability of the task environment is set at ,j p .75
so that the local optimum for an individual shifts 25% of the time, and

so that in case of such a shift, four or less randomly chosen bitsr p 4
in the goal vector will flip. We also assume moderate intragroup and
intergroup diversity by setting and , respectively.k p 16 X p 16

Figure 3 shows the results from the baseline simulation of the endog-
enous network. These results are typical based on many other parameter
configurations. The mean performance of the population, shown in figure
3(A), increases rapidly early on and then converges to a steady state.
Toward understanding how the social network evolves, figure 3(B) plots
the entropy measure. Recall that at , the attractions are all identicallyt p 0
equal to one, so consequently, , Gi. The socialjp (0) p 1/(M � 1) Gj ( ii

network is then starting from a point of maximum entropy of 4.25. As is
shown in figure 3(B), it then monotonically declines to about 3.64 by the
end of the 20,000 periods; 3.64 is equivalent to the entropy of a fully
random network with only 13.5 agents.16 The network is then becoming
increasingly ordered as each agent’s imitation is being concentrated on
an ever smaller set of other agents.

Given that agents focus their attention on an increasingly narrower set
of other agents, to whom are they attracted? Is learning mutual so that
agent i, who chooses to learn from agent j, is also a primary source of
knowledge for agent j? How strong is the tendency for mutual learning
within groups? These questions can be answered only by going beyond
the measure of entropy and delving into the relationships between the
stage-2 choice probabilities of agents in the population. For this purpose,
we impose extra structure on the simulation by randomly allocating 20
individuals to four groups and then holding their group memberships
fixed across the 20 replications.17 The output of this exercise is reported
in figure 4 and table 2. Letting denote the time series of averagedj jp̄ (t) p (t)i i

16 As there are five agents in each agent’s group, it is not then true that each of these
groups form their own networks. This does not occur for a variety of reasons. First,
it is possible that agents in other groups might be more similar though that will not
hold on average. Second, even if agents outside of one’s group are less similar than
those in one’s group, randomness in what agents adopt and what is observed could
cause an agent to learn more from nongroup agents and thus induce the establishment
of stronger links with them.
17 This structure is imposed only on the simulations reported in this section. For all
other simulations, the individuals are reallocated (randomly) to the groups at the start
of each replication.
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Fig. 3.—Baseline time series

over the 20 replications, agent i’s steady-state choice probability of ob-
serving agent j is defined by:

20,0001j j˜ ¯p { p (t). (18)�i i5000 tp15,001

Figure 4 plots pairs of choice probabilities, , as points in a prob-j i˜ ˜(p , p )i j

ability space for all i and j, . Since there are 20 agents in our ex-i ( j
periment and each agent can then observe 19 other agents, there are 190
distinct points in total. For each point, the horizontal coordinate is the
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Fig. 4.— plotj i(p , p )i j

probability agent i observes agent j and the vertical coordinate is the
probability agent j observes agent i. First, note that these probabilities
range widely from 0.02 to 0.15, though there is a concentration of these
points at lower probabilities, around 0.04. More important, the plot clearly
indicates that there is a positive relationship between and such thatj i˜ ˜p pi j

a relatively high (low) is paired with a relatively high (low) . In otherj i˜ ˜p pi j

words, social learning tends to be mutual. For a more thorough verification
of this property, we computed correlations between and ; see table 2.j i˜ ˜p pi j

The correlation is positive in all cases and is generally rather high. Fur-
thermore, the correlation appears to increase in X—see table 2(B) for when
X is raised to 32—and decrease in k—see table 2(C) for when k is lowered
to 8. The stronger the mutuality in learning, the greater the intergroup
diversity in goals, and the lower the intragroup diversity.
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TABLE 2
Correlation between andj ip pi j

inm

imm

.25 .5 .75 1

A. ;X p 16 k p 16

0 .352657 .34733 .29233 .480061
.25 .807451 .773048 .664245 .506862
.5 .586809 .823839 .806357 .689279
.75 .406306 .791755 .799773 .784047
1 .268945 .681329 .860758 .821619

B. ;X p 32 k p 16

0 .540246 .60035 .736072 .630133
.25 .901541 .862012 .835666 .795593
.5 .786882 .941283 .906933 .878898
.75 .546645 .892148 .93532 .911084
1 .385492 .837522 .930428 .949636

C. ;X p 16 k p 8

0 .649251 .718233 .741049 .706987
.25 .875383 .851206 .83393 .845132
.5 .870919 .920375 .857695 .837231
.75 .735823 .922655 .907393 .90641
1 .57091 .912438 .905253 .910782

To delve further into network structure, let us impose a bit more struc-
ture without losing any generality. Suppose agents are initially allocated
to different groups in a nonrandom way so that group 1 contains agents
1 through 5, group 2 contains agents 6 through 10, group 3 contains agents
11 through 15, and group 4 contains agents 16 through 20. The steady-
state observation probabilities, , are described in figure 5, where agentjp̃i

i’s (the observer’s) identity is represented along the vertical frame and
agent j’s (the target’s) identity is represented along the horizontal frame.
A scaled value of is then captured by the grey shading of the cell locatedjp̃i

on ith row and jth column. The lighter (darker) the shading, the higher
(lower) the probability with which agent i observes agent j. Since an agent
observes herself with zero probability, the diagonal cells are shaded com-
pletely black. The most striking feature of the figure is the emergence of
four adjoining square ( ) blocks of cells along the diagonal having5 # 5
lighter shades. Each block measures the probabilities of various agents’
observing members of the same group. Clearly, not only is learning mutual,
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Fig. 5.— with nonrandom agent allocation ( ; ; ; ;j in imp X p 16 k p 16 m p m p .5 j p .75i

).r p 4

it is also more active among agents sharing similar goals.18 Considered
together with the results reported in table 2, it indicates that such intra-
group mutual learning is more intensive when the groups are more seg-
regated and isolated from one another.

18 As noted earlier, Carley (1991) constructs a model of endogenous social groups in
which the probability of interaction between agent i and agent j is solely determined
by how much information they share. However, in her formulation, the agents are not
goal driven and the resulting mutual learning between members of the same group
arises from the specification of these interaction probabilities at the social level, rather
than from the deliberate choices made at the individual agent level.
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COMPARATIVE DYNAMICS

Having explored the emergent structure of networks, the next step is to
investigate how performance is influenced by the reliability of the com-
munication technology supporting the network and the productivity of
agents in engaging in innovation. Furthermore, we must investigate how
this relationship is impacted by features of the environment such as the
turbulence in the task environments and interagent goal diversity. So as
to extract away the impact of initial conditions as well as to focus on the
long-run properties of the system, our analysis will concentrate on the
key endogenous variables at the steady state. Figure 3(A) shows that the
social system reaches the steady state by . The speed of con-t p 10,000
vergence to the steady state varies, depending on the parameter values.
By taking our measurements as per-period averages over the time periods
between 15,000 and 20,000, we are confident that our observations rep-
resent the system’s behavior on the steady state.19 To this end, define ,Ẽ

, and as the steady-state values of the endogenous variable:˜p̃ q

20,000 20,000 20,0001 1 1˜ ˜ ¯˜ ¯E { E(t), p { p(t), q { q(t).� � �( ) ( ) ( )5000 5000 5000tp15,001 tp15,001 tp15,001

(19)

19 Note that the performance measure is an average over the 5,000 periods from t p
to 20,000 with that being averaged over 20 replications. Two conditions need15,000

to be satisfied in order for this to be an appropriate measure for comparative dynamics:
(1) the long-run output must not be sensitive to minor changes in initial conditions,
and (2) the output must converge to a steady state by such that the per-t p 15,000
period average from 15,000 to 20,000 approximates the mean of the limiting distribution
of the underlying stochastic process. For this purpose, we examined the output from
a set of randomly selected replications using different initial conditions. For any given
set of parameter values, the output generated from these runs is quite similar, and we
found no evidence that the long-run population averages are sensitive to initial con-
ditions. This suggests that the stochastic process generating is ergodic; that is, thep̄(t)
transient distribution of the output in period t converges to a stationary distribution
in the limit as for any initial conditions. While the limit distribution is independentt r �
of initial conditions, the rate at which the transient distribution converges to it is
generally not. A computationally efficient procedure would then call for identifying
the minimum time index, , such that the transient distributions are approximately thet̂
same from that point on. We have examined the time series of averaged over 20p̄(t)
replications for the baseline parameter values of , , , andX p 16 k p 16 r p 4 j p

for all and all . The simulationsin im.75 m � {.25, .5, .75, 1} m � {0, .05, .1, . . . , .9, .95, 1}
looked very similar to the one captured in figure 3(A). In all cases, the convergence
occurred by . See Law and Kelton (2000) for further discussions on how tot p 15,000
identify the steady state.
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In the remaining part of this article, the focus is on exploring the impact
of , , j, r, X, and k on , , and .20im in ˜ ˜˜m m E p q

Impact of the Reliability of the Network

Figure 6 plots , , and for various values of im˜ ˜ ˜E q p m � {0, .05, .1, .15, .2,
, given the baseline parameter values, ,in.25, . . . , .9, .95, 1} m p .5 j p

, , , and . Figure 6(A) shows that when there is.75 X p 16 k p 16 r p 4
minimum reliability, , the mean entropy at the steady state remainsimm p 0
at its initial value of 4.25 which corresponds to a fully random network.
The mean entropy gradually drops as increases and then is essentiallyimm

constant once achieves a sufficiently high level (.4 in this case). Furtherimm

improvements in reliability mildly raise entropy for reasons that are
unclear.

Figure 6(B) shows that the endogenous probability of choosing inno-
vation, , is near its maximum value of one when the reliability of theq̃
communication technology is at its minimum, . As rises, theim imm p 0 m

rate of innovation correspondingly declines as a more reliable network
encourages agents to engage in more imitation as well as forming a more
useful network (as reflected in falling entropy). However, the impact of
a marginal gain in on varies, depending on the level of . Whenim im˜m q m

is low, declines at an increasing rate up to . Beyond thatim im˜m q m � 0.35
point, declines at a decreasing rate.q̃

Most interesting is figure 6(C), where the steady-state performance of
the social system, , is plotted as a function of the network reliability,p̃

. The plot has the S-shape of a logistic curve, where the performanceimm

initially rises at an increasing rate until reaching an inflection point, at
which the marginal gain is maximal, and then ending up in a region of
diminishing returns. Performance achieves its maximum level at a point
of maximum reliability of the network.

The logistic curve shape of with respect to is universal to allimp̃ m

parameter configurations considered. However, a notable property of fig-
ure 6(C) is not universal. Figure 7 plots steady-state performance as a
function of for the same parameters as in figure 6 except that isim inm m

lowered to .25 and k to 4; agents are less productive at innovation and
the degree of intragroup goal congruence is higher. Performance is now
declining in network reliability when reliability is sufficiently great (spe-
cifically, ). Quite surprisingly, an improvement in the communi-imm ≥ .3

20 It is important to remember that the system never settles down as agents’ goals are
always stochastically changing, and as a result, agents always changing their behavior
and their methods vector. These reported variables— , , —are then to be interpreted˜ ˜˜E p q
as the means of the stationary distribution for this stochastic process.



Fig. 6.—Baseline steady states



Fig. 7.—Nonmonotonicity of steady-state performance ( ; ; ; ; )inX p 16 k p 4 m p .25 j p .75 r p 4
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cation technology leads to a deterioration in performance. Further sim-
ulations reveal that the nonmonotonicity of in is a general propertyimp̃ m

for some part of the parameter space. In particular, the simulation results
reported in figures 8 and 9 show that declines in when j is low, rimp̃ m

is high, and/or X is high.
Property 1.—When the reliability of the network ( ) is sufficientlyimm

low, steady-state performance is increasing in reliability. When the˜(p)
reliability of the network is sufficiently high and the task environment is
sufficiently volatile (j low and/or r high) and/or the goal diversity among
groups is sufficiently great (X high), performance is decreasing in
reliability.

Why does the reliability of the network have a deleterious effect on
performance? Recall that there are two search strategies in our model,
innovation (individual learning) and imitation (social learning). For a
given value of , an increase in raises the rate at which existingin imm m

useful practices diffuse in the population, which certainly improves the
short-run performance of an average agent. However, in the longer run,
its impact is more subtle because agent behavior regarding innovation,
imitation, and network links is adapting. In particular, a more reliable
network means that new ideas are diffused faster, imitation tends to be
substituted for innovation, and the greater use of imitation allows a more
structured network to form. All of these effects have the implication of
making agents in a network more alike as they observe and adopt the
practices of others. When the task environment is relatively stable, this
lack of diversity is not a problem, and it is more critical that the faster
social learning allowed by a higher value of (and the commensurateimm

fall in entropy) speeds up convergence to local optima. But when the task
environment is sufficiently volatile, agents have to modify their tasks
continually. For that reason, homogenization of the network is seriously
harmful as it is less likely that anyone in the network will have useful
tasks that would serve the new environment well. While individually, it
may make sense to utilize the network more intensively when it is more
reliable, the ensuing lack of diversity that occurs—as imitation crowds
out innovation—is detrimental from a collective perspective. This finding
explains why, under certain conditions, steady-state performance can de-
cline in response to a more reliable network. Better communication does
not necessarily mean higher performance when agents can adjust their
mix of innovation and imitation and their network links.

As for the role of intergroup diversity (as measured by X), first note
that when X is low, the optima of agents from different groups tend to
overlap to a greater extent. This overlap leads to social learning that is
more global in nature in that an agent tends to observe other agents in
different groups more frequently than when optima are tightly clustered
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Fig. 8.—Impact of j and r ( ; )X p 16 k p 16

around distinct groups. The implication of such global learning in our
context is that it allows interagent diversity to survive over time instead
of leading the social system to a collection of isolated homogeneous clusters
of individuals who are unable to adapt flexibly to changing environments
because of the lack of diversity.21 This is portrayed in figures 9(A)–(B).

What we have seen in this section is the critical role that persistent

21 Note that for a higher value of X, there is more intergroup diversity in the population.
However, this diversity is not particularly useful for the agents, as their goals are very
different and the likelihood of learning anything useful from the agents in other groups
is much lower.
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Fig. 9.—Impact of X and k ( ; )j p .75 r p 4

diversity plays in promoting steady-state performance in the context of a
changing environment. A simple improvement in the reliability of the
network may harm long-run performance because of how agents adapt
their rates of innovation and imitation. Enhanced communication tech-
nology can induce too much imitation with a resulting loss of diversity
in responding to future environments. In that case, an individual agent’s
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capacity to carry on independent innovation is crucial in supplying the
necessary fuel for the effective operation of the social networks. To that
issue, we turn next.

Impact of the Productivity of Innovation

Given the relationship between network reliability and performance, the
next task is to explore how this relationship depends on the capacity of
agents to innovate. Obviously, agents who are more productive at inno-
vation have an immediate virtue through enhancing individual learning.
But productivity at innovation is also beneficial from a social perspective
as it implies a wider variation in methods in the population which is the
raw material for, in the short run, responding to a changing environment.
This suggests that more innovative agents are also beneficial from a social
learning perspective. However, as the results below will show, it is also
necessary that the network be well developed for diffusing ideas, and that
depends not only on the exogenously determined reliability, but also on
the endogenously determined structure of the network. The extent to
which a higher capacity for innovation improves performance depends
on how well the network is developed, which depends on how extensively
agents use it, which depends on their innovation-imitation mix, which
depends on the capacity for innovation; thus, we come full circle. The
ensuing results are far from transparent at this point.

Figure 10(A) reports the frequency with which agents choose to innovate
on average, , as a function of network reliability, , for various inno-imq̃ m

vation capabilities, . The impact of on thein inm � {0, .25, .5, .75, 1} m

frequency with which agents try to innovate is monotonic: rises as inq̃ m

is increased. Populations with more innovative members will indeed en-
gage in more innovation, irrespective of network reliability. The steady-
state entropy of the social network, , is plotted as a function of inimẼ m

figure 10(B) for varying values of . Note that as goes up, entropyin inm m

falls more slowly in but tends to converge to a lower steady-stateimm

value. Consequently, an increase in causes the network to be lessinm

ordered when is low, while it results in a more ordered network whenimm

is high.imm

Property 2.—When network reliability is low, the order of the social
network and the capacity for innovation are inversely related. When net-
work reliability is high, the order of the social network and the capacity
for innovation are positively related.

In explaining this property, we know from figure 10(A) that an increase
in induces the population to lean toward innovation relative to imi-inm

tation regardless of network reliability. As there is less social learning,
reinforcement learning implies the network is less ordered. Examination



Fig. 10.— , , and ( ; ; ; )˜˜ ˜q E p j p .75 X p 16 k p 16 r p 4
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of figure 10(B) reveals this is the case when network reliability is low as
entropy is rising in when . However, when network reliabilityin imm m ≤ .35
is high, a second force comes into play because a higher value for alsoinm

raises the value of learning from others since they are more likely to have
discovered useful methods. Thus, the quality of the network—in terms
of agents’ having a diverse array of useful ideas—rises with the produc-
tivity of innovation. Innovation is the fuel for improvements in system-
wide performance as it creates variations in the population which can be
diffused among its members through the social network. But that quality
cannot be adequately tapped if reliability is low. Thus, when is low,imm

agents find that accessing the network is unproductive, as it is hard to
observe other agents’ ideas. Agents then respond to being more innovative
by simply substituting away from imitation to innovation. However, when

is high, agents find that they can better access the ideas of others, andimm

since agents are highly innovative, there are many worthwhile ideas float-
ing about. Increased quality and reliability of the network then work
together to result in a more ordered network even though innovation is
more productive. The key point is that the value of imitation and the
value of developing links in the network are dependent on the innova-
tiveness of agents. Innovation and imitation are substitutes in search, but
through the mechanism of social learning, they are also complements.

Having described how the capacity for innovation impacts network
structure, let us next turn to its effect on population performance. Figure
10(C) reports how influences the relationship between steady-stateinm

performance, , and network reliability, . Note that the curve retainsim˜ ˜p m p

the S-shape for all values of . However, the position of the curve forinm

varying values of exhibits an interesting pattern: as rises, thein in ˜m m p

curve shifts up and to the right. This pattern leads to the rather surprising
result that steady-state performance can decrease with the capacity for
innovation and thus, performance can be maximized by having moder-
ately innovative agents.

When is sufficiently low, a population mainly improves on the basisimm

of individual learning through innovation because of the poor reliability
of the social network. As innovation is the primary source of improvement,
greater innovativeness enhances performance as shown in figure 10(C).
On the other hand, for sufficiently high , the population extensivelyimm

deploys both innovation and imitation. As network reliability achieves
its maximum value, there are diminishing returns to network reliability
so that the mix of innovation and imitation is fairly insensitive. Once
again, higher levels of innovativeness tend to produce higher performance
(though the relationship is not quite as strong as when is low). Thingsimm

get interesting for intermediate values of because the effect ofim inm m

becomes more complex. To begin with, imitation is both a social good
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and a social detriment. By imitating others rather than developing new
ideas, an agent is not adding to the stock of knowledge. However, by
helping to spread worthwhile ideas, an agent is improving the value of
the network, and thereby, social performance. When network reliability
is moderate, agents may be engaging in too much individual learning
from a societal perspective. It might be better to tap into the network to
pass along ideas and develop more useful links (which can only be
achieved through experience). Making agents more innovative induces
them to use the network even less, thereby exacerbating this problem. We
then find that when network reliability is moderate, greater innovativeness
can be deleterious from a societal perspective. By inducing the population
to concentrate more on diffusing local innovations across the social system,
a reduced capacity for innovation can lead to superior performance.

Figures 11–14 explore how this nonmonotonicity of performance with
respect to innovation productivity depends on the characteristics of the
environment. The ensuing properties are summarized below.

Property 3.—When the reliability of the network is sufficiently low,
performance is increasing in the capacity for innovation. When the reli-
ability of the network is moderate and the task environment is sufficiently
volatile (j low and/or r high) and/or the individual goals of the agents
are not too dissimilar (X low and/or k low), performance is maximized at
a moderate capacity for innovation.

The volatility in the task environment is captured by , the fre-1 � j

quency of the goal change, and r, the variability of the goal change. Figure
11 shows performance as a function of for andim inm m � {.25, .5, .75, 1}

. Imitation and the development of a useful network arej � {.75, .95, .99}
more valuable when the environment is changing more frequently, be-
cause individual learning is woefully inadequate for keeping up with these
changes. One needs the diversity of ideas of the population at large, and
as a complement, a well-developed network. It is in such a situation that
making agents more innovative will encourage them to engage in more
individual learning when the population of agents taken as a whole would
do better by engaging in more imitation and the development of better
links. We then find that, under a moderately reliable network, a greater
capacity for innovation decreases performance when the environment is
volatile but enhances performance when the environment is(j p .75)
stable . For similar reasons, more innovativeness can be dele-(j p .99)
terious when r is high, because the changes in the environment tend to
be bigger on average (holding fixed the frequency with which those
changes occur); see figure 12.

The impact of intergroup and intragroup goal diversity on the rela-
tionship between innovativeness and performance is reported in figures
13 and 14. Of course, performance decreases both in X and k since goal
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Fig. 11.—Impact of j ( ; ; )X p 16 k p 16 r p 4

heterogeneity is deleterious (though heterogeneity in tasks is advanta-
geous). Speaking to property 3, the opportunities for social learning and
development of a useful network diminish as goals become more diverse
both globally and locally. Thus, the deleterious effect of a greater capacity
for innovation is less pronounced as agents rely more upon individual
learning. When individual learning is the dominant method of search,
performance rises monotonically in the ease with which new ideas are
generated.
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Fig. 12.—Impact of r ( ; ; )j p .75 X p 16 k p 16

CONCLUDING REMARKS

Progress, whether scientific, economic, or social, is driven by innovation—
which serves to produce a diversity of ideas—and imitation through a
social network—which serves to diffuse these ideas. This study is, to our
knowledge, the first to model all three primary forces—the discovery of
new ideas, the observation and adoption of the ideas of others, and the
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Fig. 13.—Impact of X ( ; ; )j p .75 k p 16 r p 4

endogenous development of a social network. At the individual level,
innovation and imitation are substitutes, as an agent can choose to allocate
effort to discovering new ideas or to observing the ideas of others. How-
ever, at the social level, innovation and imitation are complements. More
innovation provides a better pool of ideas that imitation can take ad-
vantage of through a social network. In our model, the quality of the
social network is driven by three factors. The first factor is the exogenous
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Fig. 14.—Impact of kp ( ; ; )j p .75 X p 16 r p 4

reliability of the communication technology which controls the likelihood
that an agent observes another agent’s idea. The second factor is the
value of the ideas that are observed. This is the result not only of inno-
vation, but also of how rapidly useful ideas diffuse, which depends on
the regularity with which the network is accessed. The third factor is the
quality of the links between agents, which is itself the product of past
experience with the network, as agents reinforce those links that have
proven to be a productive source of ideas in the past. These last two
factors are not only endogenous, but also provide an increasing returns
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mechanism in that a network is of higher quality if it is used more fre-
quently, and agents will use a network more frequently when it is of
higher quality.

By endogenizing both the innovation-imitation mix and the structure
of the social network, our analysis has been able to uncover some subtle
determinants of the performance of a population, in particular, the role
of the agents’ capacity for innovation and the reliability of the commu-
nication technology for conveying ideas. While a more reliable commu-
nication technology is beneficial in that it leads to a greater diffusion of
ideas, it has the undesirable by-product of reducing diversity in ideas as
agents replace their own ideas with the most useful ones discovered and
engage in more imitation and less innovation. This by-product is not
seriously detrimental when the problems faced by agents are relatively
stable, but when they are changing sufficiently quickly, then the loss of
diversity means a loss of the raw material for adaptation. This results in
performance being less when reliability is greater. From a social per-
spective, agents are engaging in too much imitation, though at an indi-
vidual level, their innovation-imitation mix is appropriate.

A second subtle result concerns how performance depends on the ca-
pacity of agents for innovation. When that capacity is enhanced, agents
invest more effort into innovation, which actually may cause performance
of the population to decline. When network reliability is only moderately
good, it may be socially (though not individually) beneficial to engage in
more imitation. Even though this reduces the development of new ideas,
it leads to a more developed social network and thus, greater diffusion
of ideas. Making agents more innovative induces them to use the network
even less, thereby exacerbating the inadequate development of the net-
work. We then find that when agents endogenously determine how much
effort to put into innovation and imitation, greater innovativeness can be
deleterious from a societal perspective. By inducing the population to
concentrate more on diffusing local innovations across the social system,
a reduced capacity for innovation can lead to superior performance.

Let us conclude by discussing a few directions for future work. Though
the discovery of ideas—through either innovation or imitation—was sub-
ject to random forces, it was assumed that the evaluation and imple-
mentation of those ideas was flawless. Alternatively, an agent’s evaluation
of an idea could be based on the true distance between an agent’s goals
and the new methods vector (after adopting the idea) plus some noise.
Along similar lines, one could assume that what actually gets implemented
is the true idea plus noise. This assumption is particularly pertinent when
it comes to imitation, as one is trying to infer ideas from what people are
doing or writing, and such a process is far from flawless. These modifi-
cations are not only a move toward greater realism, but also, both of
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these extensions would serve to introduce additional diversity in the set
of methods present in the population. As our analysis showed that a
superior communication technology can be detrimental because it reduces
diversity, these factors are quite pertinent to the analysis.

On a grander level, a natural extension of our model is to allow agents
to be heterogeneous in their capacity for innovating and imitating. Some
agents are more creative and thereby more productive in generating new
ideas when they choose to engage in the act of discovery. Other agents
may be more sociable or more capable of understanding the ideas of others
and thus find it easier to learn what other agents are doing. Such het-
erogeneity raises interesting questions about the properties of the social
network. To what extent does this heterogeneity lead to more order? Are
links strongest with certain types of agents? Do agents tend to form links
with those who are most innovative or those who are most imitative (and
thus may be best connected to others in the population)? Finally, in our
model, it was assumed that an agent’s goal—the characteristics of the
problem being solved—was exogenous. However, there may be societal
forces that determine what is considered to be a problem worthy of solv-
ing. In the context of a hierarchy, problems could be mandated from
above, and in less structured contexts, imitation may occur not only with
respect to solutions, but also the problems themselves. While it is unclear
how the endogeneity of agents’ goals should be modeled, it strikes us as
important. Enriching our model in these directions should generate further
insight into the forces underlying progress and growth.
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