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Abstract

This paper explores how rigid norms - that involve agent behavior not re-
sponding to the environment - can persist in response to permanent changes
in the aggregate environment. Agents deploying a flexible rule are shown to
be crucial in the system transiting between rigid norms in response to such
changes. A rigid norm is found to be more prevalent when aggregate changes
are less frequent, larger, and more abrupt.
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1 Introduction

Why do some governments fail to respond to large economic and social changes and
ultimately lose power? Why are some elected officials unresponsive to their con-
stituents? Why do some corporations remain rigid in their practices as market con-
ditions change? Such ossification may reflect the embodiment of a norm of being
resistant to change, of acting in the same manner regardless of the state of the envi-
ronment. But what are the processes that would generate such a norm of behavior?
Are certain features of the external environment conducive to people being unrespon-
sive to a change in their circumstances? What about characteristics of the internal
structure of the social system?

To gain some preliminary insight into these issues, a series of simple models have
been developed that, while not yet accurate representations of governments, political
systems, or corporations, do embody some essential features of those systems. One
such feature is their hierarchical structure. Agents who hold important high-level
positions are the product of an implicit selection process that chose them from the
masses at the lower levels. A second feature is that, like any type of society, agents
with status are imitated by young agents in their striving to succeed within the
system. In the context of a hierarchy, status is closely related to rank. There is
then social learning between new agents and high-ranking old agents. With these
two dynamics - selection and social learning - a number of interesting insights have
been derived.

In Harrington (1998), the social selection process is examined to understand what
types of individuals are selected for advancement within a hierarchy. At each level,
agents compete with one another for advancement with relative performance deter-
mining who advances. After observing the realization of a stochastic environment,
each agent selects an action. Some agents are endowed with a flexible rule - they
choose the action that is best for that environment - while other have a rigid rule -
they choose the same action irrespective of the environment. Performance depends
on the appropriateness of one’s action for the current environment and how proficient
one is with that action. Proficiency is presumed to come from past experience as a
result of such processes as learning-by-doing.! It is shown that if a hierarchical social
system has sufficiently many levels then its highest levels are dominated by agents
whose behavior is relatively unresponsive to the environment.?

The preceding analysis yielded some insight about the tendencies of those at high
levels to be rigid. It cannot, however, help us understand how a mode of behavior can

! Another interpretation is that agents choose messages (for example, stances on political issues)
and consistency in one’s messages (for example, with respect to a political ideology) lends advantage
through enhanced credibility.

2 An equilibrium approach to these issues is examined in Harrington (1999b). Strategic behavior
is shown to be a counteracting force as it results in agents being more flexible as they approach the
top level.



become ubiquitous throughout a society or, in other words, become a social norm.
To do that requires taking account of how rules get passed from agent to agent. This
social learning feature is modelled in Harrington (1999a) along with social selection.
In that set-up, new agents enter the system at the bottom rung. At that point, they
make an initial adoption decision - whether to deploy a rigid rule or a flexible rule in
trying to scale the hierarchy. This decision is determined by two factors: an innate
tendency to be rigid or flexible and imitation of those who have been successful.
Specifically, a new agent randomly selects a mentor from the highest level and learns
that mentor’s history of actions and environments though, quite importantly, does not
observe his behavioral rule. He then attempts to draw inferences about his mentor’s
underlying behavioral rule and uses those inferences in deciding on a rule to adopt.
After adopting behavioral rules, this population of new agents is subject to the social
selection process. This is then a feedback system whereby new agents arrive, imitate
old successful agents, and out of that cohort of new agents comes a new set of role
models who are then imitated by the next generation of new agents and the process
continues. Agents at the top not only affect the rigidity of the system by themselves
being rigid or flexible but may have a pervasive and lasting influence through what
the next generation infers about “what it takes to move up.” It is shown that a norm
of being unresponsive to one’s environment is more prevalent and robust than one of
being adaptive. The reason is that, among those agents who get to the top, it is easier
for new agents to infer their mode of behavior if they used a rigid rule than if they
used a flexible rule. In the terminology of Boyd and Richerson (1985), a rigid rule is
of “higher fidelity” than a flexible rule and this makes it more imitable. The source
of the lower fidelity of a flexible rule is that selection tends to promote those flexible
agents whose history is consistent with them using a rigid rule while it does not tend
to promote those rigid agents whose history is consistent with them using a flexible
rule. It is then easier for new agents to identify those role models who deployed a
rigid rule and this results in a higher fraction of them adopting a rigid rule. In brief,
a rigid rule is more imitable than a flexible rule.

In the preceding model, an individual’s environment was allowed to stochastically
change. However, the aggregate environment was kept fixed in the sense that the
frequency of environments for the population of agents did not change. Or, more to
the point, what was the most common environment was fixed over time. As a result,
the rigid rule that performed best on average did not change. This property would
seem quite important for the stability of a rigid norm in that a rigid norm is always
the rigid rule that performs best, on average. If the aggregate environment changes
(and with it what is the best performing rigid rule) then an existing rigid norm may
become quite dysfunctional and this could allow a successful invasion by a flexible
rule. It is then not clear that we would observe a rigid norm if there are aggregate
or large-scale changes. The objective of this paper is to explore that issue.

While aggregate fluctuations do indeed make it more difficult for rigid norms to



occur, a rigid norm is found to be capable of surviving such shocks. Under certain
conditions, rigid norms are quite resilient. Though, when a rigid norm is in place,
few agents may be deploying a flexible rule, those agents are shown to have a very
important role in the persistence of rigid norms. Specifically, agents deploying a
flexible rule are instrumental in transiting between rigid norms in response to changes
in the aggregate environment. The analysis also shows that a rigid norm is more likely
to occur when large-scale changes are less frequent, bigger in size, and more abrupt.

While, to our knowledge, this line of research is unique in asking how a norm
of being resistant to change can develop in a social system, research on cultural
transmission is similar in its interest in how behavioral norms develop. This work
includes Cavalli-Sforza and Feldman (1981), Boyd and Richerson (1985), Harrison and
Carroll (1991), Epstein and Axtell (1996), and Bisin and Verdier (1997). Relatedly,
there has been considerable work in economics on social learning. Our modelling
approach differs in both the space of traits over which learning occurs and in the
transmission process. Previous work on social learning is concerned with learning
about actions. This may involve agents learning from the actions and associated
payoffs of others — as in Ellison and Fudenberg (1993,1995), Rhode and Stegeman
(1993), and Bala and Goyal (1994) — or may have agents learning only from the
population distribution of actions — as in Banerjee (1992,1993), Bikhchandani et al
(1992), Bergstrom and Stark (1993), Kirman (1993), Vega-Redondo (1993), Banerjee
and Fudenberg (1995), and Smith and Sorensen (1996). In contrast, our focus is
learning about rules, learning about how to respond to one’s environment. This is a
substantive difference in that rules are not directly observable, at best one observes
realizations of a rule as it interacts with the environment. In terms of modelling the
transmission process, previous research has modelled horizontal transmission in that
agents are learning from their peers. Our transmission process is vertical in that it is
predicated upon a hierarchical society in which agents learn from those above them.
Vega-Redondo (1998) also encompasses vertical transmission in an evolutionary-style
model. We feel this is a critical and largely unexplored feature of such social systems
as organizations and, more generally, ones in which status is important. In terms of
the process by which traits are transferred between agents, it is standard in previous
work to assume that imitation is perfect. A central assumption in our model is that an
agent’s behavioral rule is private information so that imitation is problematic. Novel
within the social learning literature, the imitability of an agent’s trait is endogenized.

2 A Dynamical Model of a Social System

Our formulation of the process determining behavioral norms in a social setting is
comprised of four elements. A description of an agent’s meta-environment and how
it changes. The space of behavioral rules over which the population is evolving. The
selection process by which agents compete and social status is determined. And the
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social learning process by which traits are transmitted across generations.

2.1 Structure of Society

The most crucial element of our conception of a society is that it is hierarchical. This
means that it is comprised of a set of k(> 2) ordered levels that run from a “low-
est” level, denumerated level 1, to a “highest” level, denumerated level k. At each
level there is a large (countably infinite) population of agents. A key presumption
is that agents strive to advance to higher levels. Whether it is a politician trying
to advance from the state legislature to the House of Representatives or a regional
manager striving to become a vice-president in a corporation, advancement typically
requires performing relatively better than a subset of one’s peers who faced compa-
rable circumstances. We model this process by assuming that, at each level, agents
are randomly matched into pairs. Each of these matchings is faced with a stochastic
environment. Once the environment is revealed to the agents, they choose actions.
The agent with greater relative performance is promoted to the next level while the
other agent is assumed to exit the system. Though this “up-or-out” structure is ex-
treme, casual observation suggests that most candidates who lose do not run again
while those corporate employees who are “passed over” when their time has come
may no longer be on the “fast track” which makes them less likely to be considered
for promotion.? Eventually, each agent “expires” in that we constrain agents to being
in the system for at most k£ periods where a period equals the length of time spent at
a level. A generation equals the length of a single lifetime (which is k periods). The
first generation of the model then encompasses periods 1, ..., k, the second generation
is periods k + 1,..., 2k, and so forth.

At each level, agents face two random events: the agent with whom they com-
pete for advancement and the external environment. The latter is assumed to be
of two possible types, {0, 1}, where the probability an agent faces environment 1 in
generation g is denoted b?. An agent’s environment is assumed to be independently
distributed across levels. Though there is individual uncertainty, there is no popula-
tion uncertainty in the sense that, at every level, a proportion &9 of all matchings have
environment 1. This lack of population uncertainty greatly simplifies the analysis. In
responding to one’s environment, agents have two feasible actions at their disposal,
{0,1}. In a manner to be described below, action 0 (1) is the best myopic response
to environment 0 (1). When &9 > (<)1/2, action 1 (0) is then more frequently the
appropriate response to the environment and, in that sense, is the best overall action.

The aggregate environment is subject to change in the form of movements of b9,
the frequency with which environment 1 occurs. This we model by assuming that
it deterministically oscillates between b € (0,1) and 1 — b with the switch occurring

3Schlesinger (1991) documents the progressive paths taken to higher office while Rosenbaum
(1984) documents the fast-track feature of corporations.



every 1" generations.

b { bifge {1,..., 7,27 +1,...,3T,4T +1,...}
)l 1-vbifge{T+1,...,2T,3T +1,...,4T,5T +1,...}

Note that the time between changes in the aggregate environment is at least one
generation. If change occurs within generations then imitation can be quite dysfunc-
tional as new agents are routinely imitating agents who were successful for a different
aggregate environment. In that case, preliminary analysis suggests that a flexible rule
prevails as a norm. Thus, we limit our attention to inter-generational changes where
it is not so clear as to what norms will develop.

2.2 Space of Behavioral Rules

Associated with each agent is a behavioral rule. For simplicity, we limit our attention
to behavioral rules that condition only on the current environment. It is then the
set of functions that map the set of environments, {0,1}, into the set of actions,
{0,1}, with the exception that we exclude the pathological case of always choosing
an action inappropriate for the current environment. We believe this simplifies the
analysis without any loss of generality. A flexible agent is defined to be one who
always selects the action best suited for the environment: he chooses action 0 (1)
when the environment is 0 (1). A rigid agent chooses the same action irrespective of
the environment. There are two types: those who always use action 0 and those who
always use action 1.

As agents advance up through the system, they accumulate a personal history.
Though there are many history-dependent types at any given level in the system, it
is sufficient for our purposes to partition the population into the following five types:
rigid agents endowed with action ¢ (denoted Ri), i € {0, 1}; flexible agents who have
always chosen action i (denoted F), i € {0,1}; and flexible agents who have chosen
both action 0 and action 1 (denoted F'N).

2.3 Selection

The process by which people advance in this social system and thereby gain social
status is specified as follows. If the two matched agents choose distinct actions then
the agent whose action matches the environment survives and advances to the next
level. If both agents select the action which matches the environment, the agent who
has chosen that particular action more frequently in the past advances. If they have
chosen that action equally frequently then an agent is randomly selected to survive.
Who advances if both agents choose the less appropriate action need not be specified
as the set of equations which describe the population dynamics is independent of it.



There are several notable features of this selection process. First, competition for
advancement is local in that an agent competes with only one other agent (as opposed
to competing with the population at large). Second, advancement depends only on
an agent’s current performance where, implicitly, an agent’s current performance is
determined by the current environment, his current action, and his proficiency with
the action used. Third, proficiency comes from experience, from having done the
same thing over and over. Note that survival depends lexicographically on one’s
current action and one’s experience with that action so that the incremental effect
from choosing a better action exceeds the incremental effect from more experience.*

2.4 Social Learning

The state of the social system is represented by k populations, one at each of the
system’s k levels. At the end of each period, those who were at the highest level are
assumed to exit the system (there is “mandatory retirement” after k periods in the
system). For the population at level h € {1, ...,k — 1}, half of them advance to level
h + 1 according to the selection process described above while the other half exit the
system. A fresh cohort of new agents is assumed to enter level 1.

The behavioral rule that a new agent adopts is determined by a confluence of
two forces: imitation of those who were successful and natural predisposition. There
are two aspects to imitation: identifying who is worth emulating and inferring their
code of conduct. The former is relatively easy as it only requires identifying people
with high rank. The latter is problematic. An agent does not wear her behavioral
rule on his chest and one cannot look into the heart of another. What an agent is
presumed capable of doing is observing the past behavior of an agent and the context
in which she had to act. The following imitation process is specified. Each new
agent randomly chooses one agent from the current level k population (those with
the highest social status) to act as his role model or mentor. We do not have them
observe the entire population because limited information seems more natural. An
incoming agent observes his mentor’s history in terms of the actions she selected and
the environments she faced. If a new agent’s mentor always chose the same action
and, furthermore, chose this action when it was inappropriate for the environment,
this is unequivocal evidence that the mentor is rigid in that action. In that case,
the new agent adopts that rigid rule. If a new agent’s mentor chose both actions

4Note that there is presumed to be no cost to being flexible. There could be an ex ante cost to
being flexible (for example, becoming familiar with both actions) and/or an ex post cost incurred
whenever one switches actions. One way in which to model an ex ante cost is as follows. If a
rigid agent and flexible agent both choose the same action and have the same proficiency then the
rigid agent is promoted with probability q € (%, 1) . In that the current model assumes g = %, this
specification would seem to enhance the survivability of agents who deploy a rigid rule. In a sense,
the model has an implicit ex post cost to being flexible in that an agent is less proficient with some
actions.



during her lifetime then this is unequivocal evidence that she is flexible. A new agent
then adopts the flexible rule. The problematic case is when a new agent’s mentor
always chose the same action but always faced the environment for which that action
was appropriate. Such behavior is consistent with both flexible and rigid rules. We
assume that new agents have natural predispositions to being flexible or rigid and
this predisposition breaks the indeterminacy. A proportion w € [0, 1] of new agents
are predisposed to being rigid which means that they adopt a rigid rule in that case.
A proportion 1 — w are predisposed to be flexible which means that they adopt a
flexible rule in that case. A new agent then adopts the rule that he is predisposed to
unless the behavior of one’s mentor is evidence to the contrary. One could imagine
w being determined by what types of norms are prevailing outside of this particular
social system. Once a new agent adopts a rule, it persists with him throughout his
time in the system.

In this section, we have provided a narrative description of the dynamical system
while the Appendix provides a formal definition. Due to its complexity, numerical
analysis is used. The model in Harrington (1999a) is a special case of this model
when 7' = 400 so that the aggregate environment does not change.

3 Norms in a Fixed Aggregate Environment

Prior to examining the general model, results for the special case of a fixed aggregate
environment are reviewed. Specifically, it is assumed that T' = 400 and b9 = b > % for
all g. After reviewing what happens within the hierarchy during a single generation
(Harrington, 1998), social learning is introduced and the development of norms across
generations is examined (Harrington, 1999a).

3.1 Selection of Rigid Agents

The purpose of this section is to briefly review some properties of the selection process
that operates within the k-level system and which was examined in Harrington (1998).
To begin, the proportion of agents who are maximally proficient in action 0 (which
either means that they are rigid in action 0 or they are flexible and have always
faced environment 0) steadily and rather rapidly goes to zero after level 2. Since
environment 0 occurs relatively infrequently, such agents are ill-suited for this meta-
environment. All of the meaningful dynamics then take place with respect to F'ls
(flexible agents who are maximally proficient in action 1 because they have always
faced environment 1), F'Ns (flexible agents who are not maximally proficient in either
action because they have faced both environments), and R1s (agents who are rigid
in action 1). At low levels, with agents having only faced a few environments, there
will be a reasonable number of flexible agents who have only faced environment 1.



Next note that when an F'1 and an R1 meet to compete for advancement, an F'1
advances with probability % +(1-10) > % because, when the environment is 1, he is
equally proficient in action 1 to an R1 and, when the environment is 0, he adapts
and chooses action 0. This differential advantage provides a force by which the
proportion of flexible agents can rise. However, as flexible agents rise through the
hierarchy and face more environments, an increasing proportion of them will have
faced environment 0 and thus be less proficient in the better action than R1s. This
lack of proficiency puts them at a disadvantage compared to those surviving agents
who are rigid in action 1. Though R1s may initially be driven down, their differential
proficiency in action 1 becomes increasing scarce among flexible agents so that rigid
agents eventually come to dominate.?

Using a phase diagram analysis, several possible paths for a population are derived.
First, the proportion of flexible agents steadily rises as a cohort moves from the
bottom to the top of the hierarchy. This requires that & be sufficiently small. Second,
the proportion of flexible agents rises as one goes from low to moderate levels but falls
as one goes from moderate to high levels. This can occur when k is sufficiently large.
Third, the proportion of rigid agents (who use the action most appropriate for what
is the most common environment) steadily rises as one moves up the hierarchy. This
is not so much dependent on k£ but rather on the initial population mix. While there
are other possible paths, simulations show that these are, by far, the most common.%

Interpreting this model in the political context, let the environment be the policy
preferences of voters, agents be politicians, and the action chosen be a politician’s po-
sition on the issues. The hierarchy reflects the property that political aspirants might
start by running for low level office and if they succeed by winning office then they
become eligible to run for the next higher level office. A rigid agent can be thought

5Tt is shown in Harrington (1998): If 1 > 0 and b9 > 1 then limj_.o0 9 = 1. The definitions
of these variables are in the Appendix.

6 As noted by Scott Page, this dynamic has the peculiar property that promotion may be negatively
correlated with cumulative past performance; that is, agents whose cumulative performance is lower
may be promoted at a higher rate. The argument is as follows. Promotion is based on current
performance. Current performance is enhanced through greater proficiency with action 1 (what
is most frequently the best action). Proficiency with action 1 is enhanced through having chosen
it more often in the past. This implies that current performance is maximized by having always
chosen action 1 in the past. For the same history of environments (and where both environments are
realized), cumulative past performance for an agent who always chose action 1 is lower than that of
an agent whose action always matched the environment because the incremental value from choosing
the best action is assumed to be infinitely larger than being more proficient with an action. We
then find that agents with a history of having always chosen action 1 will (eventually) be promoted
at a higher rate than agents with a history of having matched the environment even though the
latter has higher past performance. This property is partially due to assuming that promotion is
based only on current performance but also partly an artifact of the simplifying assumption that
choosing a better action is infinitely better than being more proficient with an action. If we made
this effect finite then eventually the past performance of rigid agents would overtake agents who
deploy a flexible rule as rigid agents come to reap the benefits of investing in proficiency.



of as an ideologue in that his positions are unresponsive to voters’ preferences while
a flexible agent is an office-seeker as his positions are tailored to match those policies
supported by voters (which also serves to maximixe the probability of winning office).
Given this interpretation, Harrington (1998) shows that ideologues can survive and
dominate high-level offices. A closely related model in Harrington (2000) is specifi-
cally tailored to the political setting and it shows how pure office-seeking politicians
can end up looking like ideologues.

3.2 Stability of Rigid Norms

Let us now consider the development of stable norms when both selection and social
learning are operative but when the aggregate environment is fixed. This is the special
case of our model when 7' = +o00 and was examined in Harrington (1999a). For our
discussion, suppose b = b > .5 for all g so that environment 1 is always the most
frequent environment and thereby action 1 is always the best single action.

A behavioral rule is said to be a locally stable norm if there exists a local attractor
for which a large fraction of agents use that rule. The key finding is that a rigid
rule is more prevalent than a flexible rule as a locally stable norm. When enough
new agents are predisposed to a particular mode of behavior, it is generally the case
that that mode of behavior can dominate. In other words, for a wide range of values
for (b, k), it is a local attractor for a high fraction of agents to use a rigid (flexible)
rule when enough incoming agents are predisposed to be rigid (flexible); that is, w is
close to 1 (0). The more problematic and interesting case is when new agents are not
predisposed to a rule. How likely is it that such a rule can dominate? Here we found
a notable asymmetry: a rigid rule fares much better than a flexible rule when faced
with an incoming population which is biased against it. It is common for a rigid rule
to be a locally stable norm regardless of the value of w. Even when w = 0, so that all
incoming agents are predisposed to be flexible, there is a local attractor with a high
fraction of agents using a rigid rule for a wide range of values for (b, k). In contrast,
a flexible rule is generally not a locally stable norm when most incoming agents are
predisposed to be rigid (that is, w is sufficiently close to one).

Selection favors those agents who have always chosen action 1 for then they are
maximally proficient in the action that is most frequently the best response to the
environment. For agents who use a flexible rule, this implies that selection favors
those who have always faced environment 1. Hence, many of those agents who use
a flexible rule and rise to the top are indistinguishable from agents who use a rigid
rule. This inability to differentiate themselves results in those new agents who have
an innate bias to be rigid adopting a rigid rule and, in essence, “hard-wiring” their
mentor’s history of having always chosen action 1. When there are enough new
agents predisposed to be rigid, a flexible norm is unlikely to develop. In contrast,
since rigid agents (in action 1) are proficient in action 1 regardless of the history of
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their environments, selection does not favor those rigid agents who have exclusively
faced environment 1. This allows them to differentiate themselves from agents who
use a flexible rule and is why a rigid rule is a locally stable norm even when all new
agents are predisposed to be flexible.

For a behavioral rule to thrive, it need not be sufficient that those agents deploying
that rule rise to the top but what may also be required is that they have differentiated
themselves from those who use other rules. A rigid rule does this more effectively
than a flexible rule. In the terminology of Boyd and Richerson (1985), a rigid rule
has “higher fidelity” than a flexible rule and this makes it more likely to become
ubiquitous.

4 Norms in a Changing Aggregate Environment

In this section, T is finite so that what is the most common environment changes
across generations. The main objective is to understand how such large-scale changes
affect the stability of rigid norms. In conducting numerical analysis, values must be
specified for the system’s seven variables: the four parameters defining the meta-
environment, (b, k,w,T), and the three initial conditions, (ry,7g,b'), where, in the
initial generation, r; is the proportion of agents using a rigid rule in action ¢ at the
system’s first level and b is the frequency with which environment 1 occurs.” With-

out loss of generality, b* = b. Simulations were run for (b,w,T) € {.05,.10,...,.95} x
{0,.1,...,1}x{1,2,...,20} and: i) k € {5,10,...,25} and (r1,7) € {(.25,.25),(.33,.33)};
and ii) k € {5,10} and

(r1,70) € {(.05,.05),(.25,.25),(.33,.33) , (.45, .45) , (.05, .45) , (.45,.05)} .

In that qualitative results were independent of the initial population, results are
reported only for (ry,ry) = (.25,.25). For reasons of visual presentation, results are
reported for T € {2,3,...,20}.®» When T = 1, so that what is the most common
environment changes once every generation, a flexible rule prevails because social
learning is dysfunctional; new agents are always imitating agents who were successful
for when a different aggregate environment prevailed. Finally, note that the cases

7Actually, there are k — 1 initial populations for we start with an empty hierarchy. An exogenous
population enters level 1 in period 1 with population mix (71, 79). In period 2, this cohort moves up
to level 2 and a new population enters level 1. However, if k¥ > 3 then there is no level k population
for them to imitate so we assume that this new population is also exogenous with mix (rq,rg)
(though all results are robust to the mix being not too different from (r1,79)). Come period k, the
population that entered level 1 in period 1 will have reached level k so that the new population
entering level 1 will have a level k population to imitate. From period k onward, the entering level 1
population will be endogenous as it is determined by the level k population and w through (11)-(12)
(see the Appendix).

8Inclusion of T' = 1 tends to obscure viewing portions of the three-dimensional surface.
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of, say, b = .6 and b = .4 both involve a cycle in which the frequency with which
environment 1 occurs alternates between .6 and .4. What differs between them is the
starting value which is .6 when b = .6 and .4 when b = 4.

In that the aggregate environment (specifically, the frequency of environment 1)
is subject to a cycle of length 27", a local attractor is defined to be a cycle of length
2T. After specifying values for (b, k, w, T, 11,79), the system was run until convergence
was achieved where the criterion is that the state variables between the start of one
cycle and the start of the next cycle are sufficiently close.? The system almost always
converged to a cycle of length 27" though there were some incidents of a longer cycle.

To gauge the societal presence of a particular rule in a social system, the propor-
tion of agents using that rule is calculated at each level and averaged across all levels.
Let p(Q, h,g) denote the proportion of agents using rule @ € {R1, R0, Flexible} at
level h in generation g. The presence of rule () in the social system in generation g
is measured by ¢ (Q,g) = (%) Sk _ 1 p(Q,h,g)."% Assume the system has converged
by generation ¢’. The presence of a rule at a local attractor is then measured by
d(Q) = (%P ng;Tﬁl ¢ (Q, g) which is the proportion of agents using rule @) aver-
aged over all levels for a given generation and then averaged over the 27" elements of
a cycle. Also reported is the range of values over a steady-state cycle:

Range (Q) = [min{¢ (Q,¢'),...,¢(Q,¢' +2T — 1)} ,max{¢(Q,q"),...,¢(Q, ¢ + 2T — 1)}]

4.1 Properties of Attractors

In Figure 1-3, the height of a surface is ® (Flexible). Its dependence on T" and b is
depicted. Figure 1 is for when the system has five levels while Figures 2 and 3 consider
systems with 10 and 15 levels, respectively. First note that these figures appear
symmetric around .5 which indicates that where one starts a cycle is not important
for the long-run properties of the system. The following property is gleaned from
these figures and the results for other values of k.

Property 1: When enough new agents are predisposed to be flexible (w is suffi-
ciently close to zero), a flexible rule is a locally stable norm and a rigid rule is
not. When enough new agents are predisposed to be rigid (w is sufficiently close
to one), a rigid rule is a locally stable norm when an individual’s environment

9The system is said to have converged by generation g if ‘ri’g —r}’g+2T‘ < .000001 and

rg? —re 9T < .000001 (where the definitions for these variables are in the Appendix).

00f course, ¢ (Q, g) is not the proportion of agents in the system using rule @ as there are more
agents at lower levels than higher levels. This would argue to having a measure which gives more
weight to lower levels. On the other hand, agents at higher levels have more power so each high-level
agent is equivalent to several low-level agents. Given these two countervailing forces, we chose to
give all levels equal weight. We do not believe qualitative results are sensitive to the measure used.
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is relatively stable (b is near 0 or 1) and a flexible rule is a locally stable norm
when an individual’s environment is relatively volatile (b is near %)

When there are no aggregate fluctuations (that is, what is the most common en-
vironment does not change over time), Harrington (1999a) found that a rigid rule
could easily be the prevailing norm even when all incoming agents were predisposed
to be flexible. By Property 1, this does not occur when what is the most common
environment changes. In that case, the identity of the best rigid rule changes across
generations. Hence, a rigid rule that became a social norm when, say, environment 1
was most common would be highly inadequate if environment 0 became most com-
mon. If sufficiently many new agents are biased to be flexible, a rigid rule would not
survive such shocks and a flexible rule would be the locally stable norm. A necessary
condition for a rigid norm to develop is that there are sufficiently many new agents
whose inclination is to be rigid. Given that does hold, Figures 1-3 show that it is
quite common for most agents to be deploying a rigid rule, on average. Thus, a rigid
norm can survive aggregate fluctuations.

What are the dynamics that allow a rule of being locked into a particular action
to persist even when what is the appropriate action to be locked into changes over
time? One possibility is the following. Suppose 9 = b > % and further suppose
that a rule of always choosing action 1 (R1) is thriving. With environment 0 being
relatively infrequent, those agents who use a rule of always choosing action 0 (R0) do
quite poorly in progressing up the hierarchy. Still, there will be a latent population
of such agents in that some agents at the top will either have used or look like they
have used an RO rule. Some agents who use an RO rule will rise to the top due
to either always having always faced environment 0 or having always been matched
with another agent using rule R0. Some agents who use a flexible rule will rise to the
top having always chosen action 0 due to having always faced environment 0. With
agents who have always used action 0 as role models, some new agents will adopt an
RO rule so that there are always such agents in the population. When b9 switches to
1 — b, so that the best action is action 0, one possibility is that the latent population
of agents who use a RO rule thrives and ultimately dominates the set of agents at the
top. In imitating them, the next generation would widely use an RO rule. However,
all this does not happen.

While there is indeed a latent population of agents who use an RO rule, the latent
population of agents who use a flexible rule is much much larger because, when
environment 1 is more common, a flexible rule vastly outperforms a rule of always
choosing action 0. When 09 switches to 1 — b, agents who use a flexible rule end up
with a much greater share of the top level than agents who use an RO rule because
their presence at the time of the change is proportionately so much bigger. This
can be seen in Figure 4a which plots a cycle for (b, k,w,T) = (.65,10,.7,15). In the
transitional generation (denoted generation 16), the fraction that uses an R1 rule
begins to decline. Even though the R1 rule is quite ineffective, there are initially
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so many agents deploying such a rule that it has a substantive presence for two
generations after the transition. During generations 16-18, the fraction using an R1
rule shrinks and the fraction using a flexible rule grows (as they are doing very well
against agents who always play action 1). However, the proportion of agents using
a flexible rule peaks in generation 18 with about half of the population and steadily
declines thereafter until the next large-scale change. These agents who are using a
flexible rule are being replaced with agents who use an RO rule. What is happening
is that many of those agents who deploy a flexible rule and get to the top will have
done so having always chosen action 0 because they have always faced environment 0.
(Recall from Section 3.2 our argument that selection tends to promote those flexible
agents who have always faced the most common environment because they are then
maximally proficient in what is most frequently the best action.) A new agent who
is biased to be rigid and gets one of those agents as his role model will adopt a rule
of always choosing action 0. When w is close enough to one, this results in a sizable
fraction of new agents deploying an R0 rule even though almost all of their role models
use a flexible rule. It is this beachhead that allows rigid behavior to ultimately take
over again.

This story is confirmed by examining the relationship between the average (Figures
1-3) and the range (Figures 5-7). When the average proportion of agents using a
flexible rule is low, the range is often high. This high range reflects the large presence
of flexible agents during the transitional generations and the small presence outside
of that transition. This is strikingly clear when k = 15 and w = .2 (Figures 3 and
7). The average is lowest when b is between .15 and .3 (and .7 and .85) and this is
also when the range is highest (thus generating these “cadillac tailfins”). This story
also explains why a flexible rule prevails when a large fraction of incoming agents are
predisposed to be flexible. Given a mentor who always chose action 0 (because he
always faced environment 0), a large fraction of new agents will adopt a flexible rule
rather than an RO rule so that flexibility begets flexibility.

Animation: A QuickTime movie of Figures 2, 3, 5, and 6 - as w is raised from zero
to one - is available at:

http : | Jwww.econ.jhu.edu/People/ Harrington/ Fluidity.htm

4.2 Comparative Statics

Property 2: Less frequent aggregate fluctuations and more severe aggregate fluc-
tuations conduce a rigid rule to be a locally stable norm.

Figures 1-3 reveal that the prevalence of a rigid rule is increasing in both the
size of the change, which is larger when ‘b — %‘ is larger, and the infrequency of the
change, which is increasing in T'. The latter is most apparent for values of b that lie
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at the cusp of a flexible rule being dominant and a rigid rule being dominant. For
example, examine the contours around (b, k,w) € {(.4,5,1) (.35,10,6),(.35,15,.6)}
that hold b fixed. The reason is quite intuitive. Examination of Figure 4a reveals
that the proportion of agents using an R1 rule is steadily growing with the number
of generations for which environment 1 is most common. The more time until a
transition, the more that agents deploying a rigid rule can grow.

A bit more interesting is the result that more severe aggregate fluctuations are
conducive to a rigid norm prevailing. By having ‘b — %‘ be larger, the rigid rule not in
favor is driven down more relative to agents who use a flexible rule. This, however, is
not relevant to survival (or, more to the point, revival) of a rigid rule. The persistent
prevalence of rigid behavior is not predicated upon the latent population of, say,
agents who use an RO rule thriving when the most common environment switches
from 1 to 0 but rather from agents who use a flexible rule thriving when the transition
occurs and many of those agents getting to the top looking like they use an RO rule.
A more extreme change then helps the cause of rigidity because it reduces the fidelity
of a flexible rule; that is, it reduces the ability of agents who use a flexible rule and
rise to the top to differentiate themselves from agents who use a rigid rule. The closer
b is to 1 (0), the more likely it is that flexible agents at the top will have only faced
environment 1 (0) and chosen action 1 (0) and thereby are observationally equivalent
to an agent deploying a rigid rule. This means a higher fraction of new agents (who
are predisposed to be rigid) adopts a rigid rule.

4.3 Effects of Gradualism

Thus far, the size and frequency of aggregate changes on social norms have been
explored. In this sub-section, the model is enriched to introduce a third characteristic
of large-scale change - abruptness. Consider the following intertemporal path for the
frequency of environment 1 over a single cycle:

bifge{l,...,T -z}

b—(2b—1) () ifge {T—2+1,...,T}
1—bifge{T+1,...,2T — z}
1—b+(2b—1)(9%) ifge {27 —=2,...,2T}

b =

This cycle repeats itself every 27" generations. The parameter space is now (b, k, w, T, z)
where z € {0,1,...,7 — 1} is the number of generations in the transition of Y from

b to 1 — b (and similarly from 1 — b to b). The preceding model is the special case

of z = 0. For example, let b = .8 and T" = 10. If z = 1 then a cycle has b? equalling

.8 for nine generations, .5 for one generation, .2 for nine generations, and .5 for one

generation. If z = 2 then 09 equals .8 for eight generations, .6 for one generation,

.4 for one generation, .2 for eight generations, .4 for one generation, and .6 for one

generation. Raising z then eases the transition.
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We examined the dependence of @ (Flexible) and Range (Flexible) on z € {0,1,...,7 — 1}
for (b,k,w,T) € {.05,.10,...,.95} x {5,10,15} x {0,.1,...,1} x {10} and (ry,7) =
{(.05,.05),(.25,.25), (.45, .45) , (.05, .45) , (.45,.05)} . We also considered T € {5,15}
and (ry,rg) = (.25,.25). The case of (k,T) = (10,10) is shown in Figure 8 and is
representative of the results. Flexible norms are more likely to develop when the
transition is more gradual and less abrupt.

Property 3: A more abrupt transition conduces a rigid rule to be a locally stable
norm.

This finding is consistent with preceding analysis which established that more
extreme changes in environmental frequency are conducive to a rigid norm. Figure
9 shows what a cycle looks like when (b, k,w,T) = (.7, 10,.5,10) for z € {0,3,6,9}.
When z = 0 so that the transition is maximally abrupt, the range of proportion of
agents deploying a flexible rule is [.04,.65] . When z = 9 so that the transition is very
smooth, the range is instead [.67,.94] so that the minimum presence of agents using
a flexible rule exceeds the maximum presence when z = 0.

4.4 Efficiency of Norms

While our model does not specify the performance of the social system (only the
performance of individual agents as it pertains to their promotion within the system),
some insight can be had into it if one supposes that an agent’s contribution to the
performance of the social system depends on the appropriateness of his action and
his proficiency with that action. A flexible norm ensures that agents always respond
appropriately to the environment. The cost, however, is that flexible rules involve
lower proficiency. A rigid norm achieves proficiency but then behavior may often be a
poor response to the environment. Indeed, this cost could be quite substantial if the
rigid norm involves an action that is infrequently a good match to the environment.
In light of this trade-off, the best solution might be to have an evolving rigid rule
where agents use a rule that is rigid in the action which is most frequently the
best response to the environment. It must be evolving because what is the most
common environment - and thereby what is most frequently the best response to the
environment - changes over time.

Our previous analysis showed that a rigid norm could persist over time and the
reason is that it does evolve with the aggregate environment. However, the efficiency
of a rigid norm will depend very much on how quickly it evolves. One that evolves
slowly may entail extended periods of time in which agents are acting inappropriately
for the environment at a high rate. To gain some insight into this issue, define 9
as the proportion of agents at level A in generation g whose action matches the
environment:

e = br?’g +(1-0) rg’g + (1 - r?’g — 7{}79)
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Next define 6 (g) as that proportion averaged across all k levels:

0(g) = (%) hzi:leh’g

Finally, we define © to be this system-wide average after it is averaged across 27T
generations (so that it encompasses an entire cycle):

g'+2T—-1

o= (5) PR

where ¢’ is some generation for which the system has converged. © is said to be the
efficiency of the system. However, recall that we are only measuring the frequency
with which the appropriate action was chosen and are not taking account of the
proficiency of agents.

Figures 10 reports © for various values of (b, w,T") where (k,z) = (10,0). Note
that Figure 10 corresponds to Figure 2; for the same parameter values, the latter
measures the presence of agents using a flexible rule while the former measures the
efficiency of the system. The first property to note is that efficiency can be high even
if the proportion of agents using a flexible rule is not. Consider w = .8 and b around
.25 or .75 (the results are the same). The proportion of agents using a flexible rule is
less than .5 while efficiency is around .75. This indicates that the rigid rule is evolving
rather rapidly.

Next note that the efficiency of norms is non-monotonic in the stability of the
environment, as measured by ‘b — %‘ . Generally, efficiency is highest when the envi-

ronment is very volatile (b is close to 3) or very stable (b is close to 0 or 1). Since

50 1 g'+2T—1 k
= () X R0 -

g=g' h=1

if the population mix was fixed then, depending on the sign of %, efficiency would

either monotonically increase or decrease as, say, b moves from % to 1. Of course, the
mix is not fixed and depends on the value of b. The non-monotonicity follows from
the property that there is a large presence of agents using flexible rules when the
environment is very volatile and a large presence of agents using the appropriate rigid
rule when the environment is very stable. Efficiency is lowest when the environment
is moderately volatile because it allows for many agents to deploy a rigid rule but this
results in the inappropriate action often being chosen, typically with a frequency of
around min {b, 1 — b}. The exception to this result is when w = 1 and T is low (so that
the aggregate environment changes rapidly) in which case efficiency is monotonically
decreasing as the environment becomes more stable. This is due to the rigid rule not
evolving fast enough.
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Property 4: Generally, the efficiency of the system is highest when the environment
is very volatile (b is close to 3) or very stable (b is close to 0 or 1). Efficiency is
lowest when the environment is moderately volatile (b is close to .25 or .75).

Figure 11 tracks efficiency over a cycle for various values of b and w with (k, T, z) =
(10,10,0) . There are two distinct patterns. The first pattern occurs when the envi-
ronment is sufficiently volatile and sufficiently many new agents are predisposed to be
flexible; for example, (b, w) = (.6,.5) . The efficiency of the system is quite high due to
the high proportion of agents using a flexible rule. When the aggregate environment
switches in generation 11, efficiency spikes up. Presumably, this is because there was
a small proportion of agents using a rigid rule in the best action for generations 1-10.
When was the best action switched, these agents perform poorly and are replaced
with agents using a flexible rule. Note that efficiency gradually declines after genera-
tion 11 as a rigid rule in what is the new best action has a small but growing presence.
The second pattern occurs when the environment is relatively stable and sufficiently
many new agents are predisposed to be rigid; for example, (b, w) = (.7,.5) . Efficiency
is noticeably lower due to a rigid rule prevailing. Contrary to the first pattern, the ef-
ficiency of the system falls when what is the most common environment (and action)
changes. When (b, w) = (.7,.5), efficiency drops from around .7 in generation 10 to
about .45 in generation 11. Initially there are few flexible agents to replace these
poorly equipped rigid agents so the system is dominated by agents who most fre-
quently choose the wrong action for the environment. As we previously showed, the
presence of flexible rules grows after such a switch and this is reflected in efficiency
rising after generation 11. However, agents deploying a flexible rule are gradually
replaced with new agents who use a rule rigid in what is now the best action. At that
point, efficiency falls and approaches the frequency with which that action is the best
action. To more closely observe how the presence of a flexible rule corresponds with
the efficiency of the system, see Figure 4.

5 Rambling Remarks

One of the more interesting insights is the role of those agents deploying a flexible rule
in transiting the system from one rigid norm to another in response to a large-scale
change. If one presumes, as we have modelled, that there are benefits from becoming
good at one thing then a rigid norm may be desirable. The trick is that, in response
to large-scale changes, the properties of that rigid norm must adapt. There are two
likely consequences if they do not. First, a rigid norm may become unstable and be
replaced by a flexible norm. That is hardly disastrous and indeed may be best for
certain contexts. However, for some situations, that may be less than best. Second,
the social system persists with a rigid norm but one in which the action does not
adapt. In that situation, the social system is periodically quite inefficient as agents
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are locked into the action that is inappropriate most of the time. However, the best of
both worlds - specialization and adaptation to large-scale changes - can be achieved
through the proper use of flexible agents. When a big change occurs, those few agents
deploying a flexible rule in a population dominated by agents who are rigid (in what
is now the inappropriate action) will quickly rise to the top. Some of them will have
histories observationally equivalent to an agent deploying a rigid rule (in what is now
the appropriate action). Those new agents who are predisposed to be rigid and have
such agents as role models will “hardwire” that behavior in the form of a rigid rule
and thus a new rigid norm develops.

Thinking about this issue more generally in the context of a corporation, the point
is to have flexibility in promotion procedures whereby someone who deviates from
the norm but performs well in some objective sense is allowed to move up. In our
model, advancement depended only on one’s action, environment, and proficiency.
However, in a corporation or a government, promotion is also likely to depend on the
characteristics of one’s superior and, in a system dominated by rigid behavior, one’s
superior is likely to deploy a rigid rule. It is not clear that an agent who deviates
from the commonly accepted action will fare well compared to other agents who stick
with the traditional action. An organizational design issue then is to put into place
a structure that allows mavericks to succeed but balances this with the virtue of
imitation - learning from the past experiences of others.

The force just described is not present in our model but is one we are currently
attempting to encompass. The idea is to make performance depend not only on
objective measures - how appropriate is one’s action for the external environment
and how proficient is one with that action - but also subjective measures - how well
does an action conform with one’s superior’s notion as to what is a proper action.
The twist is that the traits of one’s superior are the product of selection and social
learning and thus the criteria for advancement deployed by superiors are evolving
within the system. The performance criterion for advancement must then be allowed
to evolve with the system. Rather than think of this criterion as something fixed and
external to the model like profit, it is instead the evolutionary product of the past.

This idea - that the criterion which determines success in a social system may
itself be endogenous - has broad parallels with work on sexual selection in the evo-
lutionary biology literature; see, for example, Andersson (1994) and Laland (1994).
There it has been shown that a female preference for a male trait may emerge even
if, putting that female preference aside, that trait is detrimental to the number of
offspring produced. Thus, what types of traits enhance the rate of reproduction is not
necessarily something exogenous (like strength, speed, smarts) but something that
can evolve (perhaps to being red-headed, spectacled, and professoriall). While it is
unlikely that this literature will provide any models appropriate for the evolution of
social norms, it may offer some general insights that are applicable.
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6 Appendix

The initial population resides at the lowest level of the system and is comprised
of three types: rigid agents who use action 1, rigid agents who use action 0, and
flexible agents. Agents accumulate a personal history as they advance through society.
Though there are then many types after the population has a chance to interact with
the environment, it is sufficient for our purposes to partition the population into the
following five types. A hierarchy is comprised of k levels while a generation equals
the length of a single lifetime (which is k periods).

7’? Y = proportion of the level h population for generation g that are rigid

agents endowed with action ¢ (Ri), i € {0, 1}

fih’g = proportion of the level h population for generation g that are

flexible agents who have always chosen action i (Fi), i € {0,1}

z™9 = proportion of the level h population for generation g that are

flexible agents who have chosen both action 0 and action 1 (FN).

The level h-generation g state of the system is then (r{9, fi*9 ¢ib9, fi9 3h9) The
initial population mix is generally assumed to satisfy: r}’l > 0, 7“0’1 > 0, and 1 —
rit — ré’l > 0. Abbreviating 7"" with r1 and ré’l with 7, the initial conditions of
the system is (ry,79,b') where b! is the initial frequency with which environment 1
occurs.

Since agents do not have a history at level 1, the characterization of the dynam-
ical process is different between level 2 and higher levels. The level 2 population is

determined by the following system of equations:

i = (r19)? 4 2791y 9b + 1Y (1 — 1p? — g0\ (1)
$29 = (L~ 19— b 4 21— b OO (o
AT =2t ) 4 R ) )

ff =0 =021 =1 — g + (1 =19 —rg9)rg? + (1 — 19 —rp9)?] (4)

2> =0 (5)
while the level h + 1 population, for h € {2...,k — 1}, is determined by:
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ht1, h, h.g h, h.g ph, h.g ph, h.g h,

1T = 000 200 FOV 4 ()00 4 21 f 000 4 2f 0 (7)

S = 9l Il b9) 4 (0 2 (L 1) 4 e 9 (1 19) 290 (1 19)
®)

o = 2 (=) g fo (L= W) 4 2 f (=) (9)
(1= ) + 20 f (1= )

P = 9P )4 (P - 1) 20 £ () (10
+2r?’9xh’9( —b7) + 2rg g 99 4 2f g h’g( b))+ 2f, Mg hogpg 4 (mh’9)2

To see how these equations are derived, let us consider each term in (6). A

2
proportion (r?’g ) of all matchings involve R1s meeting in which case an R1 advances

for sure. This gives us the first term in (6). A proportion 2r!9ry9 of all matchings

involve an R1 and an R0 in which case an R1 advances only when the environment
is 1 which occurs in a proportion ¥ of all such matchings and thus we have the
second term. A proportion 27“’1“9 flh Y of all matchings involve an R1 and an F'1. An
R1 advances with probability % when the environment is 1 and probability zero when
the environment is 0. Since 2719 f{*9[b9 (%) + (1 —09)0] = 999, we have the
third term. A proportion 279 fi9 (2719209) of all matchings involve an R1 and an
FO0 (FN) and, in those matchings, R1 wins for sure when the environment is 1 and
loses for sure when the environment is 0. This gives us the final two terms.

Let d? Y denote the proportion of the level h population for generation g that have
always chosen action ¢ and have faced at least one type j(# i) environment. The
following pair of equations determines the behavioral rules of the level one population
of generation g + 1 :

P =l )+ (1w (1)

R =+ A5 + (1= w)d? (12
The complete dynamical system then involves the embedding of (1)-(10) in (11)-(12).
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Figure 1
Avera i
ge Proportion of Agents Using a Flexible Rule (k=5)
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Figure 2
Average Proportion of Agents Using a Flexible Rule (k=10)
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e . Figure 3
rage Proportion of Agents Using a Flexible Rule (k=15)
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Figure 4a
Average Proportion of Agents Over a Cycle

b=.65, k=10, w=.7, T=15, z=0
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Average Efficiency Over a Cycle
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Figure 8

Average Proportion of Agents Using a Flexible Rule (T
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Figure 9 - Average Proportion of Agents over a Cycle
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Figure 11
Average Efficiency Over a Cycle (k=10, T=10, z=0)
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