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A hierarchy is considered in which those agents who perform better advance to
higher levels. When agents are heterogeneous and endowed with simple behavioral
rules, Harrington (1998a) showed that agents at high levels tend to be rigid, in the
sense that their behavior is unresponsive to their environment, relative to agents at
low levels. In the current paper, agents are homogeneous but sophisticated as their
behavior is required to be consistent with a subgame perfect equilibrium. Agents at
high levels are found instead to be flexible relative to agents at low levels. Journal
of Economic Literature Classification Numbers: D00, D23, D72. © 1999 Academic Press

1. INTRODUCTION

How should we expect behavior to vary within a hierarchical system
such as a corporation, an army, or a political system? More specifically,
if we imagine heterogeneity in terms of behavioral plasticity—the degree
to which an agent tailors his behavior to his environment—should we ex-
pect agents who occupy high levels in a hierarchy to be rigid—tending to
pursue the same course of action even when the environment changes—
or flexible? This question was posed in Harrington (1998a) where it was
shown that, if the hierarchy has sufficiently many levels, agents at high
levels tend to be rigid. In that model, agents were endowed with simple
behavioral rules in that their behavior was restricted to be independent of
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the level at which they reside. There were two generic rules or agent types
in the population—those who always use the same action (or approach)
and those who choose the best (myopic) action for the current environ-
ment. Given these behavioral rules, any variation in behavior across levels
is due solely to how the mix of agents varies across levels. It is assumed that
those agents with better relative performance advance to higher levels in
the hierarchy. At sufficiently high levels in the hierarchy, this advancement
process was shown to select rigid agents for promotion. It is then predicted
that those occupying the high levels of a hierarchy will be rigid relative to
agents at low levels.1

The question of how behavior varies within a hierarchy is re-examined
here by considering a model which is a polar extreme. First, agents are
not endowed with behavioral rules but rather have preferences and are
strategic in the sense that their behavioral rules are required to form a
subgame perfect equilibrium. Second, agents are not heterogeneous in that
they have identical preferences and, furthermore, we focus on symmetric
subgame perfect equilibria so that agents deploy the same behavioral rule.
Given the lack of heterogeneity in the agent population, selection will not
be an operative force. Any variation in behavior across levels will be for
strategic reasons as agents modify their behavior depending on where they
are in the hierarchy.

We find that selection and strategic behavior generate qualitatively dif-
ferent predictions as to how behavior varies within a hierarchy. When there
are sufficiently many levels, Harrington (1998a) showed that high levels are
characterized by rigid behavior so that agents at the top are more rigid than
those at the bottom. In contrast, an equilibrium theory predicts that high
levels may be characterized by flexible behavior so that the agents at the
top are less rigid than those at the bottom.

2. A MODEL OF A HIERARCHY

Consider a hierarchy with k ≥ 3 levels. At each level, there is a count-
ably infinite population of agents. These agents are randomly matched into
pairs to compete for advancement up the hierarchy. After two agents are
matched, a stochastic environment is realized which is observed by the two
agents. For simplicity, there are just two possible environments, �0; 1�; and
it is assumed that environment 1 is more common in that it occurs with

1Related questions have been examined in Rosen (1986) and Vega-Redondo (1998). Also, a
variant of this model is used in Harrington (1998b) to show that pure office-seeking politicians
can look like ideologues if one views the electoral system as a hierarchy of offices.
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probability b ∈ � 1
2 ; 1�. In response to this environment, agents simultane-

ously choose actions from the set �0; 1�. In a manner specified below, one
of these agents will advance to the next level while the other agent exits the
system. Defining a period as the length of time spent at a level, an agent
lives for at most k periods (which only occurs when the agent traverses all
k levels in the hierarchy). Environments are assumed to be iid across pair-
ings and across levels. Hence, at each level, a proportion b of all pairings
face environment 1 and, regardless of the environments that an agent has
faced at previous levels, the probability he faces environment 1 at the cur-
rent level is b. There is then individual uncertainty in this model but no
aggregate uncertainty.

A strategy is a sequence of mappings, one for each level, which maps
from the set of feasible personal histories over the preceding levels into
the space of functions which map from the set of feasible (current) envi-
ronments into the set of feasible (current) actions. Let ahi and ehi denote
the action chosen by agent i and the environment faced by agent i at level
h, respectively. Given the assumed anonymity of one’s partners (and that
a partner’s history is private information), a history for an agent at level h
is an element of �0; 1�3�h−1� in that it includes the past environments he
faced, his past actions, and the past actions of the agents with which he was
matched. Given the space of possible actions and environments is �0; 1�,
a strategy maps this history into the space of mapping from �0; 1� into
�0; 1� which can be represented by �0; 1�2: We then have that a strategy is
a sequence of k− 1 functions �φh�k−1

h=1 where φh x �0; 1�3�h−1� → �0; 1�2:
In specifying the selection (or advancement or promotion) rule, let

�hi �a� ≡
∣∣{h′ ∈ �1; : : : ; h− 1�∣∣ah′i = a}∣∣

denote the number of times that agent i has chosen action a prior to level
h: Suppose agents i and j meet at level h and eh is their environment. If
ahi = eh 6= ahj , then agent i advances to level h+ 1 with probability one. If
ahi = a = ahj and �hi �a� > �hj �a�, then agent i advances to level h+ 1 with
probability one, a ∈ �0; 1�: If ahi = a = ahj and �hi �a� = �hj �a�, then agent
i advances to level h+ 1 with probability 1

2 , a ∈ �0; 1�:2 Agents who do not
advance exit the system.

The motivation for this selection rule is that an agent’s performance is
presumed to depend on the appropriateness of his action given the current

2With the selection model in Harrington (1998a), the main result only required: (i) if ahi =
eh 6= ahj , then agent i advances with probability one; (ii) if ahi = eh = ahj and �h

i �eh� > �h
j �eh�,

then agent i advances with probability one; and (iii) if ahi = eh = ahj and �h
i �eh� = �h

j �eh�,
then agent i advances with probability 1

2 . It was unnecessary to specify who advances when
both agents chose the inappropriate action for the current environment.
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environment (where it is assumed that action eh is best when the environ-
ment is eh� and his proficiency with that action. Proficiency is a strictly
monotonic function of the number of times with which an action has been
used. One rationale is learning-by-doing; the more an agent uses an action,
the better he gets at using it. Alternatively, if these actions are messages,
then the credibility of an agent’s message may be greater if the history of
his messages is more consistent, and such credibility may aid in convincing
other people to do as one desires (thereby enhancing one’s performance).
Performance is assumed to be primarily determined by one’s current action
and secondarily by one’s proficiency with the action deployed. Advance-
ment occurs for the agent with higher performance.

Agents are assumed to have identical preferences and to care only about
the final level that they reach with higher levels producing (weakly) higher
satisfaction. An agent’s utility function is denoted V �·� x �1; 2; : : : ; k�2 → R
with V �hy θ� being the payoff when an agent’s maximal level is h and θ is
a parameter (which we will periodically suppress). The following structure
is placed on it:

V �ky θ� ≥ V �k− 1y θ� ≥ · · · ≥ V �θy θ� > V �θ− 1y θ� = · · · = V �1y θ� = 0:

Thus, agents only value progressing to at least level θ: They are indifferent
between levels 1 and θ − 1 and any level in between.3 This parameteri-
zation is intended to capture the property that agents attach significantly
more value to high levels than to low levels with this effect being more pro-
nounced, the higher is the value of θ: Its role in stating our main result will
become apparent momentarily.

All of the above structure is common knowledge to the agents.

3. EQUILIBRIUM BEHAVIOR WITHIN A HIERARCHY

We show that there exists a symmetric subgame perfect equilibrium such
that agents are rigid at low levels in the hierarchy—choosing action 1 ir-
respective of the environment—and flexible at high levels—choosing the
action which is best for the environment. This occurs when there are suffi-
ciently many levels within the system (k is sufficiently high) and high levels
are sufficiently more valued than low levels (θ is sufficiently high).4

3The critical assumption is that V �θ − 1y θ� = · · · = V �1y θ�: That it equals zero is a
normalization.

4While this result is derived for when agents are indifferent as to progressing to levels
below level θ; the proof suggests that a continuity argument would imply the same result
holding when a small but positive value is attached to progressing from level h − 1 to h for
h ∈ �1; : : : ; θ− 1�:
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The essential step of the proof is showing that it is optimal to choose
action 1 when the environment is 0 given other agents will also be choosing
action 1. Choosing action 1 in such a situation means doing exactly what
everyone else is doing so that the probability of advancing to the next level
is 1

2 and, given the symmetry of agents’ future behavior, the probability of
advancing j levels is � 1

2 �j (assuming this agent acts optimally thereafter).
The virtue of instead choosing action 0 when the environment is 0 is that
it results in advancement to the next level with probability one since the
agent with which one is matched will be choosing action 1. The downside
to having chosen action 0 is that, from this point onward, such an agent
will be less proficient in action 1 than all other agents with which he will
be matched at higher levels. Thus, whenever he faces environment 1, he
will lose for sure. Analogously, he will be more proficient at action 0 than
all other agents so, at higher levels, he will advance for sure when the
environment is 0. It follows that, when the current environment is 0 and
all other agents are expected to choose action 1, the selection of action 0
(with optimal behavior thereafter) by an agent will generate a probability
of advancing another j levels equal to �1− b�j−1: Next note that(

1
2

)j
v �1− b�j−1 as j v

− ln�1− b�
ln�1/2� − ln�1− b��> 1�

so that choosing action 1 results in a lower probability in advancing over
the next j levels when j is low but a higher probability when j is high.
Thus, if agents attach sufficiently more value to advancing to high levels, it
is preferable to choose action 1 in such a situation. This is the basic strategy
of the proof. This argument shows how it can be optimal for an agent to
be rigid when everyone else is rigid. It is trivially optimal for an agent to be
flexible when everyone else is flexible in that choosing an action which is
inappropriate for the current environment will result in failure to advance
for certain given all other agents are choosing the appropriate action.

In stating the main result, define the following:

λ�b� ≡ ln b− 2 ln�1− b�
ln�1/2� − ln�1− b�

and let �x� denote the minimal integer greater than or equal to x and �x�
denote the maximal integer less than or equal to x; x ∈ R. It is straightfor-
ward to show that λ�b� > 1:

Theorem 3.1. If k ≥ �λ�b�� and θ ∈ ��λ�b��; : : : ; k� then ∃h ∈
�1; : : : ; k − 2� such that it is a symmetric subgame perfect equilibrium out-
come for ahi = 1 for h ∈ �1; : : : ; h� and ahi = ehi for h ∈ �h+ 1; : : : ; k− 1�:
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Proof. Consider the following symmetric strategy profile:

φhi =


1 if �hi �1� = h− 1 and h ∈ �1; : : : ; h�
0 if �hi �1� < h− 1 and h ∈ �1; : : : ; h�
ehi if �hi �1� ≥ h and h ∈ �h+ 1; : : : ; k− 1�
0 if �hi �1� < h and h ∈ �h+ 1; : : : ; k− 1�

(1)

Notice that an agent’s action depends only on what he has done in the
past and what level he is at. It does not depend on what his partners have
done. This seems reasonable in that, given a large population and a finite
number of levels, there is probability zero that an agent will meet another
agent again or meet anyone that has met anyone he has met and so forth.

(1) Let the current level be denoted h′ and suppose that h′ ∈ �1; : : : ; h�.
(1a) Suppose �h

′
i �1� = h′ − 1 (so that the history is along the equilibrium

path).
(1ai) Suppose eh

′
i = 1. Since his partner is expected to choose action 1,

agent i’s payoff from choosing action 0 is V �h′� since he is sure to lose. His
strategy calls for him to choose action 1 which yields an expected payoff of
at least 1

2V �h′� + 1
2V �h′ + 1� since, in equilibrium, he and his partner have

identical histories and choose identical actions.
(1aii) Suppose eh

′
i = 0. His strategy calls for him to choose action 1.

Assuming that he acts according to his strategy at all future levels, his
expected payoff from action 1 is

k−h′∑
j=1

(
1
2

)j
V �h′ + j − 1� +

(
1
2

)k−h′
V �k�: (2)

For h ∈ �h′; : : : ; h�, agents will have chosen identical actions at past levels
and will choose identical actions at the current level (specifically, action 1)
so that the probability of advancing from level h to h+ 1 is 1

2 . For h > h;
agents will have chosen identical actions over levels 1; : : : ; h but there will
be heterogeneity in their actions after level h since agents will have chosen
the action that corresponds to the environment and different agents may
have faced different environments. For example, a proportion b of agents at
level h+ 2 will have chosen action 1 h+ 1 times while a proportion 1-b will
have chosen action 1 h times as the former faced environment 1 at level
h + 1 (and chose action 1) while the latter faced environment 0 at level
h + 1 (and chose action 0). However, note that all agents start with the
same history of actions at level h+ 1 and that the probability distribution
over an agent’s environment is the same for all agents. This means that
the probability distribution over histories of actions is the same. Hence,
the conditional probability that an agent who has survived to level h will
survive until level h+ 1 is the same for all agents. Since half of all agents
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advance, this probability is 1
2 . The probability that an agent survives until

level h, given he has reached level h′, is then � 1
2 �h−h

′
. The probability that

an agent reaches level h and goes no further is then � 1
2 �h−h

′+1 which is the
probability of winning at levels h; : : : ; h′ − 1 and losing at h′: This argument
gives us the expression in (2).

Continuing with the case of eh
′
i = 0, now consider agent i choosing action

0 instead of action 1. He will win for sure and advance to level h′ + 1: By
his strategy, he will choose action 0 thereafter. Since then, for h > h′;
�hi �0� = h − h′ and, according to agent j’s strategy, �hj �0� = 0 for h ≤ h
and �hj �0� ≤ h−h− 1 for h ≥ h+ 1; we have that �h

′
i �0� > �h

′
j �0�∀h > h′:

Hence, when environment 0 occurs, agent i wins for sure. When instead the
environment is 1, he will lose for sure since �hi �1� = h′ − 1 < min�h; h� ≤
�hj �1�: Given the probability that the environment is 1 is b, this agent’s
resulting expected payoff is then

k−h′−1∑
j=1

b�1− b�j−1V �h′ + j� + �1− b�k−h′−1V �k�: (3)

Define

0�h� ≡
k−h∑
j=1

(
1
2

)j
V �h+ j − 1� +

(
1
2

)k−h
V �k�

−
k−h−1∑
j=1

b�1− b�j−1V �h+ j� − �1− b�k−h−1V �k� (4)

as the difference in the payoff from choosing action 1 and choosing action
0. The optimality of action 1 at level h′ when eh

′
i = 0 requires 0�h′� > 0:

Lemma 3.2. If k ≥ �λ�b�� and θ ∈ ��λ�b��; : : : ; k� then ∃h ≥ 1 such
that 0�h� > 0∀h ∈ �1; : : : ; h�:

Proof. To begin, (4) can be rearranged so that

0�h� =
(

1
2

)
V �h� +

k−h−1∑
j=1

[(
1
2

)j+1

− b�1− b�j−1
]
V �h+ j�

+
[(

1
2

)k−h
− �1− b�k−h−1

]
V �k�: (5)

Let us derive conditions whereby 0�h� > 0: First note that � 1
2 �j+1− b�1−

b�j−1 > 0 iff

�j + 1� ln( 1
2

)
> ln b+ �j − 1� ln�1− b� (6)
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or

j >
ln b− ln�1− b� − ln�1/2�

ln�1/2� − ln�1− b� (7)

where it is straightforward to show that the rhs expression in (7) equals
λ�b� − 1: We then have that � 1

2 �j+1 − b�1− b�j−1 > 0 iff j ≥ �λ�b��:
By assumption, k ≥ �λ�b��: Let us consider two cases: (i) k = �λ�b��;

and (ii) k ≥ �λ�b�� + 1:
If k = �λ�b�� then, as stated in Lemma 3.2, set θ = k so that V �h� =

0∀h ∈ �1; : : : ; k − 1�: Therefore, given V �k� > 0; 0�h� > 0 iff � 1
2 �k−h −

�1− b�k−h−1 > 0: Setting h = 1 then 0�1� > 0 iff � 1
2 �k−1 − �1− b�k−2 > 0.

Next note that k = �λ�b�� implies k− 1 ≥ λ�b� − 1 which, by the analysis
surrounding (6) and (7), is equivalent to � 1

2 �k − b�1− b�k−2 ≥ 0: Given that
1
2 < b, then the preceding inequality implies � 1

2 �k−1 − �1− b�k−2 > 0 which
is what we wanted to prove. We conclude that if k = �λ�b�� and θ = k,
then 0�1� > 0: This proves ∃h ≥ 1 such that 0�h� > 0∀h ∈ �1; : : : ; h�:

Now suppose k ≥ �λ�b�� + 1 and further suppose h satisfies k− h− 1 ≥
�λ�b��. The first term in (5) is obviously non-negative. Turning to the sec-
ond term, which is the summation, from (6) and (7) we know that � 1

2 �j+1 −
b�1− b�j−1 > 0 iff j ≥ �λ�b��: If V �h+ j� = 0 for j ∈ �1; : : : ; �λ�b�� − 1�
and V �h + j� ≥ 0 for j ∈ ��λ�b��; : : : ; k − h − 1�, then the second term
in (5) is non-negative. Next note that if k − h − 1 ≥ �λ�b��, then (7)
holds for j = k − h − 1 which means that � 1

2 �k−h > b�1 − b�k−h−2. In
that the latter is equivalent to � 1

2 �k−h > �b/�1− b���1 − b�k−h−1, it fol-
lows that � 1

2 �k−h > �1 − b�k−h−1 since b > 1 − b. Hence, the last term
in (5) is positive since V �k� > 0: From these steps, we can infer that
0�h� > 0∀h ∈ �1; : : : ; h� if V �h + j� = 0 for j ∈ �0; 1; : : : ; �λ�b�� − 1�
and V �h + j� ≥ 0 for j ∈ ��λ�b��; : : : ; k − h − 1� for all h ∈ �1; : : : ; h�
or, equivalently, V �h� = 0 for h ∈ �1; : : : ; h + �λ�b�� − 1� and V �h� ≥
0 for h ∈ �h + �λ�b��; : : : ; k − 1�: Therefore, if θ ≥ h + �λ�b��, then
0�h� > 0∀h ∈ �1; : : : ; h�: By assuming θ ≥ 1 + �λ�b��, as is done in
the statement of Lemma 3.2, it follows that 0�1� > 0 and thus ∃h ≥ 1
such that 0�h� > 0∀h ∈ �1; : : : ; h�: This analysis was done under the
presumption that k − h − 1 ≥ �λ�b�� for all h ∈ �1; : : : ; h� or, equiv-
alently, k − h − 1 ≥ �λ�b��. For this to be ensured for some value of
h ≥ 1 requires that k − 2 ≥ �λ�b�� which is exactly our supposition that
k ≥ �λ�b�� + 1.

With Lemma 3.2, we conclude that, along the equilibrium path, the pre-
scribed action of 1 at level h′, when h′ ∈ �1; : : : ; h�; is optimal as long as h
satisfies 0�h� > 0∀h ∈ �1; : : : ; h�: Furthermore, we know that h ≥ 1 exists
which satisfies 0 > 0∀h ∈ �1; : : : ; h�. We conclude that ∃h ≥ 1 such that
the strategy is optimal for these histories.
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(1b) Suppose �h
′
i �1� < h′ − 1:

(1bi) Suppose eh
′
i = 1. Choosing the prescribed action of 0 yields a payoff

of V �h′� as the agent with which he has been matched chooses action 1.
If agent i instead chooses action 1, his payoff is still V �h′� because he will
have chosen action 1 less than his partner so that he is still sure to lose.

(1bii) Suppose eh
′
i = 0: By choosing his prescribed action of 0, agent i’s

payoff is at least V �h′ + 1� while choosing action 1 yields a payoff of V �h′�
since he will lose for sure by virtue of having chosen action 1 less frequently
than the agent with which he has been matched: Thus, the prescribed be-
havior is optimal.

(2) Suppose the current level is h′ and h′ ∈ �h+ 1; : : : ; k− 1�:
(2a) Suppose �h

′
i �1� ≥ h: The prescribed action is eh

′
i : Since the other

agents are being flexible, if agent i chooses an action different from eh
′
i ,

then he fails to advance for sure with a resulting payoff of V �h′�: Choosing
eh
′
i gives at least as high a payoff so that it is optimal.

(2b) Suppose �h
′
i �1� < h:

(2bi) Suppose eh
′
i = 1: Action 0 yields a payoff of V �h′� as he loses for

sure as the other agent chooses action 1. Letting agent j be the agent with
which agent i is match, we know that �h

′
j �1� ≥ h. Since, by supposition,

�h
′
i �1� < h, then agent i fails to advance for sure if he chooses action 1 as

agent j is more proficient with action 1. Thus, action 1 also yields a payoff
of V �h′� which implies that the prescribed action of 0 is optimal.

2bii) Suppose eh
′
i = 0. Action 0 yields a payoff of at least V �h′ + 1� since

�h
′
i �1� < h implies �h

′
i �0� ≥ h′ − h + 1 which implies �h

′
i �0� > �h

′
j �0�:

Since action 1 yields a payoff of V �h′�, then action 0 is optimal.

Clearly, at level k− 1; an agent will be flexible. Given there is only one
higher level, an agent wants to maximize the probability of advancing to
that level which means choosing the action which is most appropriate for
the environment. Therefore, in equilibrium, agents must eventually be flex-
ible. Next note that once all other agents choose to be flexible that an agent
fails to advance for sure if he is not flexible. Therefore, along a subgame
perfect equilibrium outcome path, an agent must be flexible when all other
agents are flexible. Where optimal behavior is not so obvious is at levels for
which other agents are expected to be rigid. When is it optimal for an agent
to choose action 1 irrespective of the environment when other agents are
expected to act likewise? If environment 1 occurs, then choosing action 1 is
clearly best as every other agent is choosing action 1 so that doing different
ensures that one does not advance. The problematic case is when environ-
ment 0 occurs. In that the other agents are expected to choose action 1, an
agent can advance to the next level for sure by being flexible and choosing
action 0. The cost to that choice is that, at higher levels, an agent will be
less proficient in action 1 than other agents he will compete with for further
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advancement. This lack of proficiency can be seriously detrimental because
action 1 is most frequently the appropriate response to the environment.
By instead choosing action 1 when the environment is 0, the probability of
advancement falls from 1 to 1

2 but an agent remains comparable to other
agents in terms of his proficiency with the better action.

When it is sufficiently early in the hierarchy, so that there are many future
levels over which an agent will compete, it is preferable to be rigid and
maintain proficiency. Prudent behavior is to avoid being differentially less
proficient in the better action. As the number of remaining levels shrinks,
the incentive to go for the short-run strategy of being flexible mounts and
eventually becomes sufficiently great that it is not an equilibrium for agents
to be rigid. At such a level, equilibrium requires that all agents switch to
being flexible. Underlying Theorem 3.1 is then a trade-off between investing
in one’s proficiency through experience—which means choosing action 1
even when the environment is 0—and improving one’s chances of advancing
to the next level—which means choosing action 1 when the environment is
1 and action 0 when the environment is 0. The former effect dominates
when an agent is low in the hierarchy, so that many rounds of competition
remain, and the latter effect dominates when he is sufficiently high in the
hierarchy so that relatively few rounds of competition remain.

Theorem 3.1 shows when an equilibrium exists in which agents are ini-
tially rigid and then flexible. However, it is important to note that there is
always another equilibrium which has agents being flexible at all levels. We
are unaware of any basis by which to select one equilibrium over another. In
that this is a constant-sum game,5 there is no Pareto relation between any
equilibria. Secondly, none of these equilibria are weakly dominated. Finally,
along the equilibrium path, the prescribed behavior is uniquely optimal.6

5Note that a player’s payoff depends only on his final level and a fixed fraction of agents
advances to the next level. Since a fraction �1/2�h of the population will reach level h ∈
�1; : : : ; k− 1� and �1/2�k will reach level k; the average payoff in the population is fixed at∑k−1

h=1�1/2�hV �h� + �1/2�k−1V �k�.
6First note that the equilibrium with flexible behavior at all levels is a strict Nash equilib-

rium. The proof is easy. Given all other agents are choosing the appropriate action for the
current environment, the probability of advancing is zero if an agent chooses an action inap-
propriate for the current environment. Next note that, regardless of one’s history of actions,
there is a strictly positive probability of advancing to the highest level by choosing the appro-
priate action because there is always a strictly positive probability that the agent with which
one is matched is equally or less proficient than one’s self. Hence, flexibility is the unique op-
timal strategy when everyone else is flexible. The equilibrium with rigid behavior at low levels
is not a strict Nash equilibrium in that, for some histories off of the equilibrium path, there
are multiple substrategies that are optimal. In particular, when an agent deviated by choosing
action 0 when the environment was 0 (during the phase in which he was supposed to be rigid
in action 1), an action of either 0 or 1 at level h+ 1 is optimal when the current environment
is 1 in that both yield probability zero of advancing. This distinction between equilibria does
not seem to provide a basis for discriminating between them.
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FIG. 1. Minimal number of levels of flexibility when θ = k.

If agents care only about reaching the highest level, then a stronger result
can be derived.

Theorem 3.3. Assume θ = k so that V �k� > V �k− 1� = · · · = V �1� =
0: It is a symmetric subgame perfect equilibrium outcome for ahi = 1 for
h ∈ �1; : : : ; h� and ahi = ehi for h ∈ �h + 1; : : : ; k − 1�; if and only if
h ∈ �1; : : : ; k− ���− ln�1− b��/�ln�1/2� − ln�1− b�����.

Proof. The proof is analogous to the proof of Theorem 3.1. What differs
is the expression for 0�h� which is now

0�h� = V �k�[( 1
2

)k−h − �1− b�k−h−1]: (8)

It is straightforward to show that 0�h� ≥ 0 for h ≤ k − �− ln�1 − b��/
�ln�1/2� − ln�1 − b�� and 0�h� < 0 for h > k − ��− ln�1 − b��/�ln�1/2� −
ln�1− b���:

When agents care only about the highest level, equilibrium behavior can
involve being rigid throughout one’s time in the system with the exception
of the last ���− ln�1− b��/�ln�1/2� − ln�1− b���� levels.7 Plotting the min-
imal number of levels over which agents are flexible (see Fig. 1), it is clear
that, except when the environment is quite volatile (b is close to 0.5), agents
can be rigid for all but the very highest levels. For example, agents are rigid
except for the final two levels when environment 1 occurs 70% of the time.
Rigidity can then be quite common throughout the hierarchy until the up-
permost levels at which point opportunism requires that agents shed their
rigidity.

7We are considering their behavior over levels 1; : : : ; k − 1 not 1; : : : ; k as agents do not
act at level k but rather revel in the glory of their accomplishments.
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TABLE I
Maximum Level of Rigidity when V �h� = hα

b = 0:60

k = 5 k = 10 k = 15 k = 20
α = 2 0 0 0 0
α = 4 0 1 1 1
α = 6 0 2 4 4
α = 8 0 3 6 7
α = 10 0 4 7 10

b = 0:70

k = 5 k = 10 k = 15 k = 20
α = 2 0 0 0 0
α = 4 1 3 4 5
α = 6 1 5 8 10
α = 8 2 6 9 13
α = 10 2 6 10 14

b = 0:80

k = 5 k = 10 k = 15 k = 20
α = 2 0 2 2 2
α = 4 2 5 8 10
α = 6 2 6 10 14
α = 8 2 7 11 15
α = 10 2 7 11 16

b = 0:90

k = 5 k = 10 k = 15 k = 20
α = 2 1 4 6 7
α = 4 2 6 11 15
α = 6 3 7 11 16
α = 8 3 7 12 16
α = 10 3 7 12 17

Finally, we offer some numerical results for when an agent’s utility is
strictly convex in his ultimate level: V �h� = hα where α > 1: Table I reports
the maximum level at which agents’ behavior is rigid for the equilibrium
described in the proof of Theorem 3.1.8 For example, when �α; b; k� =
�6; 0:7; 10�; equilibria are known to exist for which agents deploy action 1,
regardless of the environment, for the first five levels and then are flexible
for the remaining four levels. As intuition would suggest, the maximal level
of rigidity is greater when the system is more hierarchical (k is higher) and
it is more worthwhile to be proficient in action 1 (b is higher so that action
1 is more frequently the best response to the environment). In that the

8In other words, Table I reports the highest value of h such that 0�h� ≥ 0∀h ∈ �1; : : : ; h�.
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maximal level of rigidity is increasing in α, rigidity is present higher up the
hierarchy when agents attach more value to progressing to higher levels.
This confirms the insight associated with Theorem 3.1.

4. CONCLUDING REMARKS

In the nonequilibrium selection model of Harrington (1998a), the pres-
ence of rigid behavior was greatest at the highest levels of a hierarchy (when
there are sufficiently many levels in the hierarchy). In that model, agents
were endowed with behavioral rules of which there were two generic types.
A rigid rule had an agent choose the same action irrespective of the envi-
ronment so that a rigid agent either always chose action 1 or always chose
action 0. A flexible rule had an agent always choose the best action for
the current environment which meant tailoring one’s action to the environ-
ment. In that an agent’s behavior was not allowed to vary with the level at
which an agent resides, any variation in behavior across levels is due to the
evolution of the mix of agent types as a cohort is weeded out in its progres-
sion up the hierarchy. It was shown that the proportion of agents deploying
a flexible rule goes to zero as the level becomes arbitrarily high. For sys-
tems with sufficiently many levels, agents at high levels are then predicted
to be rigid relative to agents at low levels.

The current model considers quite different forces. First, agents are not
endowed with a decision rule but rather strategically select a rule given their
preferences. Second, agents are identical in that they have the same prefer-
ences and strategy sets and, furthermore, we focus on symmetric equilibria.
Hence, any variation in behavior is not due to the changing mix of types—
in that all agents use the same rule—but rather to the variation in each
agent’s behavior across different levels in the hierarchy. The previous the-
orems establish the existence of equilibria with very different predictions
from the nonequilibrium selection model. Equilibria exist in which agents
use a rule that prescribes flexible behavior at the highest levels and rigid
behavior at the lowest levels. Agents at high levels are then predicted to be
flexible relative to agents at low levels.

What do we conclude from these findings? An ardent believer in equi-
librium might conclude that the results in Harrington (1998a) are uninter-
esting because they are inconsistent with equilibrium. However, our view
is that the truth lies in between these two extreme specifications. While
agents may be more sophisticated than always being rigid or always be-
ing flexible, they are unlikely to be as sophisticated as is presumed by as-
suming that their behavior is consistent with an equilibrium. Maneuvering
through a hierarchy is a complex dynamic problem and it is not obvious
why agents should either know or have converged to its solution. In light of
that, heterogeneity across agents may not only be in terms of preferences
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but also in their opinions of what is the best strategy. Indeed, one interpre-
tation of the model of Harrington (1998a) is that all agents have the same
objective—whether it is to maximize expected tenure, maximize the proba-
bility of getting to the top, or yet some other goal—but differ in what they
think is the best way to achieve that objective. Some may see tomorrow as
the window to the future so they choose to be flexible. Others may see the
need to invest in being proficient in a particular action and choose to be
rigid. The point is that the information that agents are apt to have and the
capabilities they are apt to be endowed with for processing that informa-
tion are likely to lead different agents to different conclusions regarding
how they should behave. That two methods of characterizing behavior—
selection from an exogenous population and equilibrium—generate quali-
tatively different predictions conveys the importance of developing a model
which properly takes account of both the ability and inclination of agents
to strategize and the limitations on the strategizing process imposed by the
complexity of the environment and the boundedness of agents’ processing
skills.

Of course, that agents consciously strategize and introspect their way to
an equilibrium is only one view of high-level reasoning. Another perspec-
tive on such cognitive processes is that agents learn. They may not be able
to derive the best rule for traversing a hierarchical social system but they
can observe the past and try to infer from it what has previously proven
successful in climbing a hierarchy. Though developed to pursue different
questions than the one posed here, an initial exploration of that sort is
conducted in Harrington (1998c) where the hierarchical selection process
in Harrington (1998a) is embedded in a model of social learning. Agents
are not endowed with a behavioral rule but rather have certain innate ten-
dencies and, most importantly, are influenced by the past behavior of those
who currently occupy the upper levels of the hierarchy. While that analysis
does not clarify the ambiguity concerning how behavior should vary across
levels in an hierarchy, it does provide some suggestions as to how learning
might be introduced to address that issue.
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