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Abstract. A Nash-based collusive game among a finite set of players is one in which the players coordinate in
order for each to gain higher payoffs than those prescribed by the Nash equilibrium solution. In this paper, we
study the optimization problem of such a collusive game in which the players collectively maximize the Nash
bargaining objective subject to a set of incentive compatibility constraints. We present a smooth reformulation
of this optimization problem in terms of a nonlinear complementarity problem. We establish the convexity of
the optimization problem in the case where each player’s strategy set is unidimensional. In the multivariate
case, we propose upper and lower bounding procedures for the collusive optimization problem and establish
convergence properties of these procedures. Computational results with these procedures for solving some
test problems are reported.

1. Introduction

In industries characterized by repeated interaction, tacit collusion among producers
can emerge that enables price to drift above single-period Nash equilibrium levels. An
example of such an industry is the restructured electric power generation sector, where
auctions are held hourly or half-hourly in many markets [21]. Empirical evidence from
the California and England-Wales markets indicate that prices have exceeded single-
period Nash prices for some periods of time [19, 23]. Models of tacit collusion can be
useful to understand how changed market design or structure might affect prices in these
circumstances.
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Broadly speaking, there are two general approaches to modeling tacit equilibria. One
is agent-based simulation, in which autonomous agents learn and evolve strategies that
can mimic tacit collusion. This approach has been applied, for example, to the analysis
of market power in the England-Wales energy generation market [3]. The other approach
is dynamic equilibrium models, or “supergames”, of the type which is the main focus
of this paper. In general, collusion involves firms coordinating their quantity and price
decisions for the purpose of generating higher payoffs. In considering the incentives to
collude, it is well known that equilibria for most oligopoly models are Pareto-inefficient;
that is, all firms could increase their payoff by jointly modifying their decisions. (For
a general statement about the Pareto-inefficiency of Nash equilibria, see Dubey [6].)
This Pareto-inefficiency takes the form that all firms would realize a higher payoff if
they marginally reduced their quantities. The approach in the economics literature to
modelling collusion is to enrich the game by having firms make decisions repeatedly.
Quantities that are not equilibria when firms interact only once can be equilibria in the
dynamic setting. Of course, if the quantities are not Nash equilibria for the static game,
firms can increase their instantaneous payoff by producing differently. To offset this
short-run gain, dynamic strategies have firms respond to any such deviation by acting in
a manner to reduce a deviating firm’s future payoff. This defines a new set of equilibrium
conditions that expands the set of equilibrium quantities as one moves from the static
to the dynamic game. For the purpose of the ensuing discussion, let � denote the set of
equilibrium quantities for the dynamic game.

There is one serious weakness with the movement from the static to the dynamic
game – the loss of uniqueness of equilibrium. Under restrictive but plausible assump-
tions, the static Cournot game has a unique Nash equilibrium. In contrast, the dynamic
Cournot game generally has many quantities consistent with Nash equilibrium. This
leaves open the issue of selecting an element from �. When firms are symmetric, it
has been common practice in the economics literature to focus on the best symmetric
element of�.However, when firms are asymmetric, such as in their cost and capacities,
there is no such focal point. The selection from� should be asymmetric but how exactly
should it relate to firms’ traits?

In thinking about this problem from the firms’ perspective, they are likely to dis-
agree over which element of � to choose; each firm wanting to select the one that
gives it the highest payoff. Firms with lower costs probably prefer lower prices and,
given any price, each firms desires a bigger market share. In light of such disagree-
ment, it is natural to think of firms bargaining to achieve some resolution. This is the
basis for the selection approach formulated in Harrington [12] which uses the set of
equilibrium quantities to construct a bargaining problem. In the axiomatic bargaining
literature (see, e.g., Osborne and Rubinstein [18]), a bargaining problem is defined
by a set of payoff vectors, �, which is the set over which players bargain, and a dis-
agreement payoff, d ∈�, which is the payoff vector if they fail to reach an agreement.
One then applies a bargaining solution to this problem which, under certain condi-
tions, produces a unique solution. Applied to our setting, the approach of Harrington
[12] is to specify � to be the payoff vectors induced by quantities in � and d to be
the Nash equilibrium payoff for the static game. If one uses the bargaining solution
of Nash [17], the collusive problem can be represented by the following optimization
problem:
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max
q∈�

∏

f∈F

(
πf (q)− πN

f

)
, (1)

where q is the vector of firms’ quantities, πf (q) is the payoff of firm f , πNf is the
static Nash equilibrium payoff for firm f , and F is the set of firms. To provide some
perspective of the formulation (1), previous work had formulated the selection problem
associated with collusion as a bargaining problem but had specified the choice set to be
the set of feasible quantities, which we will denote X, rather than the set of equilibrium
quantities; see, for example, Schmalensee [22]. It is now well known that such an ap-
proach is flawed because if the solution fails to lie in � then firms have agreed to an
outcome that they have no intent of implementing. Though it is then well motivated to
replace X with �, we are replacing the (typically) convex set X with a set that may not
be convex. Based on their descriptive appeal, we focus on pure stationary outcomes,
which prevent achieving convexification through randomization or other means.

Besides providing a formal motivation, this paper aims at studying the collusive
optimization problem (1) from a global optimization perspective. Due to the possible
nonconcavity of the objective function and the nonconvexity of constraint set, the stated
aim is computationally challenging. Our main contributions consist of a set of supporting
results that provide mathematical insights into the problem, the development of upper
and lower bounding procedures for the global solution of (1), and the demonstration of
convergence properties of these procedures.

The organization of the rest of the paper is as follows. In the next section, we present a
summary of the variational inequality (VI) approach to computing noncooperative Nash
equilibria. This is followed by two sections in which we define and analyze the feasible
set and objective function, respectively, of (1). In particular, we establish a convexity
result in the univariate case in which the strategy set of each player of the game is a com-
pact interval; convexity of the collusive game optimization problem is established in this
case. In Section 5, we present upper and lower bounding procedures in the multivariate
case and establish some convergence results for these procedures. Finally, in Section 6,
we illustrate the univariate and multivariate cases with some numerical results.

2. The VI approach to computing Nash equilibria

We begin with a review of the VI approach to the well-known noncooperative Nash equi-
librium problem. For a comprehensive study of finite-dimensional variational inequali-
ties, see [7]. The players of this game are labelled by the elements f in a finite index set
F (for firms). Player f ’s strategy set is denoted Xf , which is a nonempty, convex, and
compact subset of the Euclidean space �nf for some positive integer nf . Elements of
Xf are denoted by qf , which are nf -dimensional vectors. Let

X ≡
∏

f∈F
Xf ⊆ �n, where n ≡

∑

f∈F
nf .

Elements of X are denoted by q, whose components are qf for all f ∈ F . We write

X−f ≡
∏

f �=t∈F
Xt, ∀ f ∈ F,
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and write q−f to denote an arbitrary element of X−f ; thus q−f is the vector with
components qt for all t �= f . Player f ’s payoff function is denoted πf , which is a real-
valued function defined on �n; thus the payoff πf (q) to player f depends on the vector
of all players’ strategies. We use the alternative notation πf (qf , q−f ) for πf (q) when
we want to highlight the dependence of player f ’s payoff on his own strategy qf and
his rivals’ collective strategy q−f . Throughout the paper, we postulate that πf (·, q−f ) is
a strictly concave function in the argument qf for each fixed but arbitrary q−f ∈ X−f
and πf (qf , ·) is convex in the argument q−f for each fixed but arbitrary qf ∈ Xf .

Parameterized by q−f , player f ’s payoff maximization problem is the optimization
problem in the primary variable qf :

maximize πf (qf , q−f )

subject to qf ∈ Xf .
(2)

A Nash equilibrium is a tuple qN ≡ (qN
f : f ∈ F) such that for all f ∈ F , qN

f ∈ Xf
and

πf (q
N) ≥ πf (qf , q

N
−f ), ∀ qf ∈ Xf .

We write πN
f ≡ πf (qN) to denote the firms’ Nash payoffs. Define the vector function

F(q) ≡ −(∇qf πf (q) : f ∈ F ), q ∈ X. (3)

For ease of later reference, we summarize in the following result properties of the opti-
mization problem (2) and the Nash equilibrium.

Proposition 1. LetXf be a nonempty compact convex subset of �nf ; let πf : �n→ �
be continuously differentiable and such that πf (·, q−f ) is strictly concave for every
q−f ∈ X−f . The following statements hold.

(a) For all q−f ∈ X−f , a unique maximizer, denoted q∗f (q−f ), exists, which satisfies

( qf − q∗f (q−f ) )T∇qf πf (q∗f (q−f ), q−f ) ≤ 0, ∀ qf ∈ Xf .

(b) If πf (qf , ·) is convex for every qf ∈ Xf then the optimal value function

π∗f (q−f ) ≡ πf (q
∗
f (q−f ), q−f )

is convex and continuously differentiable with

∇π∗f (q−f ) ≡ ∇q−f πf (q∗f (q−f ), q−f ).
(c) IfXf is polyhedral, then q∗f (q−f ), and thus∇π∗f (q−f ), are piecewise smooth func-

tions of their argument.
(d) A Nash equilibrium qN exists; moreover qN satisfies

F(qN)T ( q − qN ) ≥ 0, ∀ q ∈ X.
(e) IfF(q) is a strictly monotone function onX, then the Nash equilibrium qN is unique.
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Proof. The existence, uniqueness, and variational characterization of q∗f (q−f ) are stan-
dard results in convex programming. The convexity and continuous differentiability of
the value function π∗f (q−f ) are immediate consequences of the well-known Danskin’s
Theorem [4]. The assertion about the piecewise smoothness of q∗f (q−f ) and ∇π∗f (q−f )
follows from sensitivity results of parametric nonlinear programs/variational inequali-
ties; see [2, 7, 20]. Finally, the assertions about the Nash equilibrium are well-known
results; see e.g. [7]. �


In the rest of this paper, we assume that the Nash equilibrium qN is unique; see
Proposition 2 where this assumption is used.

2.1. The firms’ payoff functions

For the most part in this paper, we are interested in a Cournot oligopoly problem in
which the payoff function πf (q) is of the following form:

πf (q) ≡ p(Q)T qf − cf (qf ), (4)

where p(Q) is the market inverse demand (vector) function, with

Q ≡
∑

f∈F
qf

being the industry production, i.e., total production by all firms (i.e., players), and cf (qf )
is firm f ’s production cost function. We write Q−f ≡ Q− qf for the total production
by firm f ’s rivals. Associated with the Nash equilibrium qN, we write QN and QN

−f
for the industry production and the industry less firm f ’s production, respectively. The
form of the payoff function (4) implies that nf is a constant N for all firms. This is
not a restrictive assumption. Indeed, suppose that each firm has nf plants, with nf not
necessarily equal. Then define N = max

f∈F
nf . We can add N − nf additional plants to

firm f’s collection of plants, each with zero capacity. This minor adjustment will not alter
the most difficult technical challenge of the problem (1), which is its global optimality
and the main concern of our work.

Both functions p(Q) and cf (qf ) in (4) are assumed to be continuously differen-
tiable, and additionally, cf is assumed to be convex and nonnegative. The algorithmic
treatment in this paper pertains to the further special case where p(Q) is a separable
affine function:

p(Q) ≡ α − Diag(β)Q, (5)

where α and β are positive vectors and Diag(β) is the diagonal matrix whose diago-
nal entries are the components of β. For the most part, the cost function cf (qf ) is not
required to be linear, except in Subsection 5.2 and in the computational tests. With a
separable affine p(Q) as above, it is easy to see that the vector function F(q) in (3)
is strictly monotone with a positive definite Jacobian matrix; consequently, the Nash
equilibrium qN is naturally unique in a Cournot oligopoly problem.
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When dealing with the payoff function (4), we employ the following notation:
q∗f (Q−f ) for q∗f (q−f ),π

∗
f (Q−f ) forπ∗f (q−f ), andπf (qf ,Q−f ) forπf (q); this change

of notation is more descriptive because player f ’s optimal response and his payoff in
this case depend on his rivals’ strategies only through the cumulative output Q−f and
not directly through the individual quantities q−f .

3. The family of collusive sets

This section introduces the family of collusive sets�δ for δ ∈ [0, 1]. We begin by moti-
vating these sets using an infinitely repeated extension of the basic Nash game. Some
properties of elements of �δ are then derived. We conclude the section by defining the
“Pareto improvement” strategies, which are central to the Nash bargaining optimization
problem to be formulated and discussed in the next section.

3.1. Motivation

Although noncooperative Nash equilibria involve each firm individually maximizing its
payoff, it is generally not true that firms are collectively maximizing some objective
such as the sum of their payoffs. As mentioned in the Introduction, Nash equilibria are
generally not Pareto-efficient. In many formulations of the Cournot game, this Pareto-
inefficiency takes the form that all firms would have a higher payoff if they all marginally
reduced their quantities. It is the possibility that all firms could benefit from coordination
of their quantity choices that provides the basis for observed episodes of collusion in
actual markets. As such coordination does not emerge as equilibrium behavior in a stan-
dard Cournot game, generation of such behavior requires either forsaking the assumption
of equilibrium or altering the specification of the game. In the economics literature [10],
it is typical to maintain equilibrium as a description of firm behavior and instead modify
the game in the direction of greater descriptive realism. In particular, let us now assume
that firms choose quantities repeatedly rather than only once.

The infinitely repeated extension of our game has firms choose quantities and realize
payoffs in each of an infinite number of periods. (What is critical for the ensuing analysis
is not that there is an infinite number of periods but rather that there is no upper bound
on the number of periods. All results could be derived assuming that the number of
periods is stochastic as long as, in all periods, a firm assigns positive probability to there
being at least one more period. For a discussion of repeated games, see Fudenberg and
Tirole [10].) In defining the strategy space of the infinitely repeated extension, assume
that a firm in period t knows the quantities selected over the previous t − 1 periods so
that its strategy can condition on that information. A strategy for firm f in the infinitely

repeated extension is then an infinite sequence of functions, ρf ≡
{
ρtf

}∞
t=1

, where

ρtf : Xt−1 → Xf and Xt−1 represents the space of period t histories. The strategy
set of a firm is the space of all infinite sequences of such functions. Let ρ denote the
vector of firms’ strategies and qt−1 ∈ Xt−1 represent a period t history. A firm’s payoff
function for the infinitely repeated extension is assumed to be the sum of discounted
single-period payoffs,
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∞∑

t=1

δ t−1 πf

(
ρt

(
qt−1

))
,

where qt−1 is defined recursively by ρ; that is, it is the sequence of quantity vectors
induced by firms’strategies. The scalar δ ∈ [0, 1] is a firm’s discount factor and measures
how a firm values a single-period payoff in the next period compared to one in the current
period. The weight given to a future single-period payoff declines geometrically in the
number of periods. Since δ ≤ 1 then current single-period payoffs are valued at least as
much as those in the future. Also note that as δ declines, less weight is given to future
single-period payoffs and when δ = 0 firms care only about their current single-period
payoff.

Even if there is a unique Nash equilibrium for the single-period game, it is well
known that the set of Nash equilibria for its infinitely repeated extension can be large. It
is assured of being nonempty since it includes the infinite repetition of the Nash equilib-
rium for the single-period game: firm f produces qNf in every period for all f (so that
there is no conditioning on the history). More interesting is to consider Nash equilibria
that result in quantity vectors distinct from qN and, in particular, generate higher payoffs.
This returns us to the issue of collusion which in the context of the infinitely repeated
extension means an equilibrium that yields a higher average payoff than πNf , for all f .
(The central result in the theory of repeated games is the Folk Theorem. Define vf as firm
f ’s minimax payoff in the single-period game. If πf > vf ∀f and ∃q ∈ X such that
πf (q) = πf then there exists a Nash equilibrium for the infinitely repeated extension
such that firm f ’s average single-period payoff is πf ∀f, when δ is sufficiently close
to one. Details can be found in Fudenberg and Tirole (1991).) Arguably the simplest
strategy achieving that objective is the grim trigger strategy [9]. It is defined as follows:
for all f ∈ F ,

ρ1
f = qf

ρtf =
{
qf if qτ = q ∀ τ ∈ {1, 2, . . . , t − 1, }
qNf otherwise;

}
∀ t ∈ {2, 3, . . . } , (6)

where q ∈ X and is to be interpreted as the collusive quantity vector. This strategy says
that firm f chooses qf in period 1. In any future period, it chooses qf if all past quantity
vectors have been q. Given each of the other firms deploys (6), the payoff to firm f

from doing so is πf (q)/(1 − δ) as this strategy profile results in it receiving profit of
πf (q) in every period. For (6) to be a Nash equilibrium, πf (q)/(1− δ)must be at least
as great as that earned from using any other strategy. Another strategy yields a different
payoff for firm f only if it entails firm f producing a quantity different from qf in some
period. Without loss of generality, consider a strategy that does so in the first period.
Note that the future payoff is πNf /(1− δ) regardless of what firm f produces as long as
it is different from qf . This follows from each of the other firms using (6) and that the
best response of firm f is to produce qNf . A necessary and sufficient condition for the
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strategy (6) to be a Nash equilibrium is then: for all f ∈ F ,

πf (q)

1− δ ≥ πf (q
′
f , q−f )+ δ

πNf

1− δ ∀ q ′f �= qf

⇔ πf (q)

1− δ ≥ π∗f (q−f )+ δ
πNf

1− δ
⇔ πf (q) ≥ ( 1− δ ) π∗f (q−f )+ δ πNf .

In the repeated game literature, this condition is called an incentive compatibility con-
straint. It simply states that unilateral deviation from a collusive solution (“cheating”)
should not be more profitable for any firm than continued collusion.

We then define the set of stationary quantity vectors supportable by Nash equilibria
to be

�δ = { q ∈ X : πf (q) ≥ ( 1− δ ) π∗f (q−f )+ δ πN
f , ∀ f ∈ F }.

The logic behind�δ possibly containing quantity vectors different from qN is as follows.
If q �= qN then, by instead choosing q∗f (q−f ), a firm can raise its current single-period
payoff. Counterbalancing this temptation is the reaction of the other firms’ future quan-
tities to such a departure. As long as the inequality in �δ holds, i.e.,

πf (q) ≥ ( 1− δ ) π∗f (q−f )+ δ πN
f , (7)

then other firms’ future response sufficiently depresses firm f ’s future payoffs that it
dominates the gain in its current single-period payoff. To better illustrate this situation,
consider the case where the firms’ quantity vectors are scalars. In this case, under the
assumption that firm f ’s single-period payoff function is decreasing in q−f (which is
standard in the literature and will be substantiated in a Cournot oligopoly model; cf. the
proof of Proposition 4), satisfaction of (7) then requires that q−f < qN−f so that firm f is
deterred from producing q∗f (q−f ) by the threat that other firms will raise their quantities

from q−f to qN−f in future periods.
In general, there are a number of technical questions associated with the set�δ , such

as its nonemptiness, relations between its elements q and the Nash strategy qN, relations
between the associated payoffs πf (q) and the Nash payoffs πN

f , and the dependence on
δ. The following simple result addresses these questions.

Proposition 2. Let δ ∈ [0, 1] be arbitrary. Assume that the Nash equilibrium qN is
unique. For all q ∈ �δ , it holds that

(a) π∗f (q−f )− πN
f ≥ πf (q)− πN

f ≥ (1− δ)(π∗f (q−f )− πN
f ) ≥ 0;

(b) πf (q) > (1− δ)π∗f (q−f )+ δπN
f ⇒ πf (q) > πN

f ;
(c) except for δ = 1,

π∗f (q−f ) > πN
f ⇒ πf (q) > πN

f .

Moreover, �0 = { qN } and

�1 =
{
q ≡ ( qf ) ∈ X : πf (qf , q−f ) ≥ πN

f , ∀ f ∈ F
}
.

Finally, for all 0 ≤ δ1 ≤ δ2 ≤ 1, �δ1 ⊆ �δ2 .
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Proof. We first note that the two explicit expressions for �0 and �1 are obvious; the
former is due to the uniqueness of the Nash equilibrium. The first two inequalities in (a)
require no proof. For the third inequality, note that

δ ( πf (q)− πN
f ) ≥ ( 1− δ ) ( π∗f (q−f )− πf (q) ) ≥ 0.

Hence (πf (q)−πN
f ) ≥ 0 if δ > 0. The same must also hold for δ = 0. Hence (a) holds,

from which (b) follows readily, and so does (c).
To prove the last assertion of the proposition, let δ1 and δ2 be as given. Let q ∈ �δ1 .

We have

πf (qf ,Q−f ) ≥ π∗f (Q−f )+ δ1 ( π
N
f − π∗f (Q−f ) )

≥ π∗f (Q−f )+ δ2 ( π
N
f − π∗f (Q−f ) ),

where the second inequality is by the fact that πN
f ≤ π∗f (Q−f ). Thus q ∈ �δ2 . �


The above result shows that the family of collusive sets {�δ : δ ∈ [0, 1]} is expand-
ing from the singleton�0, which consists of the single element of the Nash equilibrium
solution qN, to the set�1, which consists of all admissible productions q ∈ X for which
each firm’s payoff πf (q) is not lower than the Nash payoff πN

f .

3.2. Pareto improvements

A basic motivation in considering collusive strategies is to allow firms to earn higher
payoffs than their respective Nash payoffs. Mathematically, this raises the question of
whether there exist q ∈ �δ such that πf (q) > πN

f for all f ∈ F . We call such a quantity
vector q a Pareto improvement. Due to the fundamental role of this question in the notion
of collusion, we give a sufficient condition for a positive answer to the question, based
on the familiar concept of feasible ascent in optimization.

Proposition 3. If there exists q ∈ X such that

∇ψδ,f (qN)T ( q − qN ) > 0, ∀ f ∈ F, (8)

where ψδ,f (q) ≡ πf (q)− (1− δ)π∗f (q−f ), then a Pareto improvement exists.

Proof. It is easy to see that, for q satisfying (8), the vector q(τ) ≡ qN + τ(q − qN) is a
Pareto improvement for all τ > 0 sufficiently small . Indeed, for such a τ , we have

ψδ,f (q(τ )) > ψδ,f (q
N) = δ πN

f

for all f ∈ F . By part (b) of Proposition 2, it follows that πf (q(τ)) > πN
f . �


It is interesting to specialize (8) to the payoff function (4). Noting that

∇qt πf (q) =
{
p(Q)+ Jp(Q)T qf − ∇cf (qf ) if t = f
Jp(Q)T qf if t �= f ,
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where Jp(Q) denotes the Jacobian matrix of p(Q), we deduce

∇ψf (qN)T qN = p(QN)T qN
f + ( qN

f )
T Jp(QN)QN − ∇cf (qN

f )
T qN

f .

We also have, for all t �= f ,

∇qt π∗f (qN
−f ) = Jp(QN)T qN

f ,

which yields

∇π∗f (qN
−f )

T qN
−f = ( qN

f )
T Jp(QN)QN

−f .

Based on the above expressions, we easily obtain the following corollary of Propo-
sition 3, which provides a sufficient condition under which every player can increase
his/her individual payoff above the Nash payoff by simply scaling the Nash equilibrium
solution qN by a factor 1− τ for τ > 0 sufficiently small,

Corollary 1. Let cf (qf ) be a convex function satisfying cf (0) = 0. Assume that cf (qf )
and p(Q) are continuously differentiable. If 0 ∈ Xf and

δ (−qN
f )

T Jp(QN)QN
−f > πN

f + ( qN
f )

T Jp(QN)qN
f , ∀ f ∈ F,

then a Pareto improvement exists for the Cournot payoff function (4). In fact, (1− τ)qN

is a Pareto improvement for all τ > 0 sufficiently small.

Proof. Continuing the above derivation, we have

∇ψδ,f (qN)T qN

= πN
f +cf (qN

f )−∇cf (qN
f )
T qN

f +(qN
f )
T Jp(QN)QN − (1− δ)(qN

f )
T Jp(QN)QN

−f
≤ πN

f + δ(qN
f )
T Jp(QN)QN

−f + (qN
f )
T Jp(QN)qN

f < 0,

where the first inequality follows from the convexity of cf and the fact that cf (0) = 0,
and the second inequality is by assumption. Consequently, (8) holds with q = 0. The
last assertion of the corollary is then obvious. �


In general, the existence of a vector q satisfying the ascent condition (8) can be
checked by solving the following convex optimization problem in the variable (q, τ ):

maximize τ

subject to ∇ψδ,f (qN)T ( q − qN ) ≥ τ, ∀ f ∈ F
and q ∈ X.

(9)

Clearly, there exists no vector q ∈ X satisfying (8) if and only if the maximum objective
value of the above optimization problem is zero. If each firm f ’s production set Xf is
polyhedral, then (9) is a linear program. In the rest of the paper, we assume that a Pareto
improvement exists.
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4. The collusive optimization problem

In considering the problem of collusion, one can think of firms facing two subproblems.
First, firms must identify quantity vectors that are sustainable in the sense that if they
agree to produce in a certain manner then it is in the best interests of each firm to do
so; in other words, they are equilibria. Second, having identified the set of sustainable
quantity vectors, firms must select a particular vector from that set. This is the approach
outlined and implemented in Harrington [12]. The previous section addressed the first
subproblem by characterizing the set of quantity vectors supportable by a class of Nash
equilibria for the infinitely repeated extension. In this section, we take on the second
subproblem—selecting an element from �δ . When firms are symmetric, it has been
common practice to focus on the best symmetric element of �δ.When firms are asym-
metric, it seems natural that the selection should be asymmetric. For example, firms
with more capacity (as reflected in the upper bound to Xf ) or lower cost should have
higher quantities. Such can be argued from a variety of perspectives; for example, the
single-period Nash equilibrium has firms with lower cost producing at a higher rate so
the collusive solution should also retain that property. Of course, firms will disagree over
how they rank various payoff vectors. This second subproblem inherently involves bar-
gaining among the firms–as they try to resolve their differences–which makes it natural
to use a bargaining solution as a selection device.

In the axiomatic bargaining literature (e.g. [18]), a bargaining problem is defined by
a set of payoff vectors, �, which is the set over which players bargain, and a disagree-
ment payoff, d ∈ �, which is the payoff vector if they fail to reach an agreement. In
our setting, � = {π (q) : q ∈ �δ} and d = πN. For any (�, d) , a bargaining solution
assigns a subset of � (preferably a singleton). The axiomatic approach to the bargaining
problem is to put forth a set of axioms, which are interpreted to be desirable properties
for a bargaining solution to have, and to characterize the solution that satisfies those
axioms. This approach was originally laid out in Nash [17] and the Nash bargaining
solution remains the most widely-accepted bargaining solution. In our setting, the Nash
bargaining solution solves the following objective which we will refer to as the Nash
bargaining objective (NBO):1

θ(q) ≡
∏

f∈F

(
πf (q)− πN

f

)
, q ∈ �δ.

1 The Nash bargaining solution is typically formulated in terms of the selection of a payoff vector:

max
π∈{π(q):q∈�δ }

�f∈F ( πf − πNf ).

The difficulty with this problem is that deriving the choice set is a challenging computational task. Given that
our interest ultimately lies with what firms do rather than what they earn, we have instead formulated the
problem as the selection of a quantity vector:

max
q∈�δ

�f∈F ( πf (q)− πNf ).

Also, Nash originally assumed that � is convex; a property that need not hold for {π (q) : q ∈ �δ}. However,
Kaneko (1980) has shown that Nash’s result holds as long as � is compact which is true in our case. Also see
Herrero (1989).
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The (δ)-collusive game solution is a vector that maximizes θ(q) on the set �δ; thus the
collusive game problem can be stated as the following optimization problem:

maximize log θ(q)

subject to q ∈ �δ.
(10)

The logarithmic objective function is well defined and extended-valued (i.e., possibly
equal to−∞) on the feasible set (e.g., when q = qN), and is finite-valued on the subset of
Pareto improvements. Clearly, only the latter vectors are of interest in the solution of (10).

In addition to the extended-valued feature of the objective function, there are several
computational challenges associated with (10). First and foremost is the nonconvexity
of this problem in general (see the next section for more discussion). Another challenge,
which endangers the superlinear convergence of computational methods for solving the
problem and complicates sensitivity analysis under data perturbations, is the fact that the
once but not twice differentiable implicitly defined value function π∗f (q−f ) is present in
the constraint set�δ . Fortunately, it is not difficult to derive an equivalent formulation of
the Karush-Kuhn-Tucker (KKT) system of (10) as a mixed nonlinear complementarity
problem (NCP) that involves only the input functions; in particular, the resulting NCP
formulation circumvents the need to evaluate the value function during computations,
which is not a trivial task in realistic applications.

To derive the equivalent NCP formulation, we assume that each set Xf is finitely
represented:

Xf ≡ { qf ∈ �nf : gf (qf ) ≤ 0 }, (11)

where gf : �nf → �mf is twice continuously differentiable and each component func-
tion gf i for i = 1, . . . , mf is convex. In what follows, we present the KKT system of
(10) without regards to prerequisite constraint qualifications (CQs); these will be for-
mally stated when we analyze the optimization problem rigorously. (A word of caution:
while the setXf is polyhedral in many applications, the profit function πf (q) is always
nonlinear, thereby rendering the feasible set �δ non-polyhedral in all cases.) The KKT
system is as follows: for all f ∈ F ,

0 = −
∑

t∈F

∇qf πt (q)
πt (q)− πN

t

+
mf∑

i=1

λf i ∇gf i(qf )− µf ∇qf πf (q)

+
∑

f �=t∈F
µt

[−∇qf πt (q)+ ( 1− δ )∇qf πt (q∗t (q−t ), q−t )
]

0 ≤ λf ⊥ gf (qf ) ≤ 0

0 ≤ µf ⊥ πf (q)− ( 1− δ ) π∗f (q−f )− δ πN
f ≥ 0,

where λf ∈ �mf and µf ∈ � are the KKT multipliers of the constraints defining�δ . In
order to eliminate the implicit q∗f (q−f ) and π∗f (q−f ), we recall from Proposition 1 the
variational characterization of the former vector, which we can state in terms of another
complementarity system. Letting q̃f ≡ q∗f (q−f ), we can write the KKT system for firm
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f ’s optimization problem (2) as follows (again, we are informal here with the omission
of CQs):

0 = ∇qf πf (q̃f , q−f )+
mf∑

i=1

λ̃f i ∇gf i(q̃f )

0 ≤ λ̃f ⊥ gf (q̃f ) ≤ 0. (12)

Putting together the two complementarity systems, we obtain a single combined system
in which the optimal response vector q∗f (q−f ) and the value function π∗f (q−f ) are both
eliminated: for all f ∈ F ,

0 = −
∑

t∈F

∇qf πt (qt , q−t )
πt (qt , q−t )− πN

t

+
mf∑

i=1

λf i ∇gf i(qf )− µf ∇qf πf (qf , q−f )

+
∑

f �=t∈F
µt

[−∇qf πt (qt , q−t )+ ( 1− δ )∇qf πt (q̃t , q−t )
]

0 = ∇qf πf (q̃f , q−f )+
mf∑

i=1

λ̃f i ∇gf i(q̃f ) (13)

0 ≤ λf ⊥ gf (qf ) ≤ 0

0 ≤ λ̃f ⊥ gf (q̃f ) ≤ 0

0 ≤ µf ⊥ πf (qf , q−f )− ( 1− δ ) πf (q̃f , q−f )− δ πN
f ≥ 0.

The latter system, although involving the auxiliary variables q̃f and λ̃f , contains only the
input (payoff and constraint) functions and their derivatives; there are no more implicitly
defined functions.

Since an optimization subproblem (via the optimal objective value π∗f (q−f )) is
embedded within (10), the latter problem is a mathematical program with equilibrium
constraints (MPEC) [16], or more specifically, a bilevel program. Normally, the first-
order optimality conditions for such a mathematical program are rather involved; nev-
ertheless, this is not the case with (10). The main reason is that the nondifferentiable
optimal vector q∗f (q−f ) does not appear explicitly in (10); instead, it enters through
the differentiable value function π∗f (q−f ). In particular, the possible non-uniqueness

of the multipliers λ̃f in (12) is not a deterrent for the system (13) to be an equivalent
formulation of the first-order optimality conditions for (10).

Convexity in the univariate case A key concern in solving the optimization problem
(10) is the log-concavity of the objective function and the convexity of the feasible set.
Admittedly, we have not been able to resolve this technical issue in the general case. In
fact, even the analysis for the univariate case, where each player f ’s decision variable
is a scalar, the set Xf is the interval [0,CAPf ], and the cost function cf (qf ) ≡ cf qf
is linear, with cf being a positive constant, is non-trivial. Instead of giving the full
details of the analysis for this special case, we summarize the key result in the following
proposition and give a sketch of its proof, which is somewhat involved.
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Proposition 4. In the univariate case specified above, if

πN
f > ( 1− δ ) β CAP2

f , ∀ firms f such that qN
f < CAPf , (14)

then �δ is a convex set and log θ(q) is an extended-valued concave function on �δ .

Sketch of the proof. The convexity proof of �δ is divided into several steps. We first
derive the following explicit expression:

π∗f (Q−f )

=






βCAPf

(
α−cf
β
−Q−f − CAPf

)
if Q−f ∈

[
0,
α − cf
β
− 2CAPf

]

β

(
α − cf

2 β
− Q−f

2

)2

if Q−f ∈
[
α − cf
β
− 2CAPf ,

α − cf
β

]

0 if Q−f ∈
[
α − cf
β

,∞
)
,

(15)

which shows thatπ∗f (Q−f ) is a nonincreasing function of its argument. Sinceπ∗f (Qf ) ≥
π∗f (Q

N
f ) for q ∈ �δ , it follows that Q−f ≤ QN

−f for all f ∈ F and all q ∈ �δ . This
yields an equivalent representation of the set �δ:

�δ =
{
q ∈ �∗ : πf (qf ,Q−f ) ≥ ( 1− δ ) π∗f (Q−f )+ δ πN

f , ∀ f ∈ F
}
,

where

�∗ ≡
{
q ∈ �|F | : 0 ≤ qf ≤ CAPf ; Q−f ≤ α − cf

β
, ∀ f ∈ F

}

can be shown to contain qN (the condition (14) is needed here). The next step is to obtain
a further equivalent representation for each set:

�
f
δ =

{
q ∈ �∗ : πf (qf ,Q−f ) ≥ ( 1− δ ) π∗f (Q−f )+ δ πN

f

}
,

depending on whether f is a Nash-capacitated firm (i.e., qN
f = CAPf ) or a Nash-un-

capacitated firm (i.e., qN
f < CAPf ). Specifically, one can show that for a firm of the

former type, a vector q ∈ �fδ if and only if q ∈ �∗,Q−f ≤ (α− cf )/β − 2CAPf , and

α − cf
2 β

− Q−f
2
≥ ( 1− δ )CAPf

+
√[

α − cf
2 β

− Q−f
2
− qf

]2

+
δ πN

f

β
− δ ( 1− δ )CAP2

f ,

with the square-root term being a well-defined convex function of q. For a Nash-unca-
pacitated firm f , we have

�
f
δ =




 q ∈ �∗ : Q−f ≤ α − cf
β
− 2

√
πNf

β
and qf ∈ Ifδ (Q−f )




 ,
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where Ifδ (Q−f ) is the interval
[
α − cf

2 β
− Q−f

2
−

√
rδ(Q−f ), max

(
CAPf ,

α − cf
2 β

− Q−f
2
+

√
rδ(Q−f )

)]

with

rδ(Q−f ) ≡

δ

[(
α − cf

2 β
− Q−f

2

)2

−
πN
f

β

]
+ (1− δ)

[
max

(
α − cf

2 β
− Q−f

2
− CAPf , 0

)]2

.

The convexity of�fδ for a Nash-uncapacitated firm follows by showing that
√
r
f
δ (Q−f )

is concave forQ−f in the interval



 0,
α − cf
β
− 2

√
πNf

β



. Since�δ is the intersection

of �fδ over f ∈ F , the convexity of �δ follows. The log-concavity of θ(q) on �δ can
be established by calculating the Hessian of− log θ(q) and showing that such a Hessian
must be positive definite for q ∈ �1 such that πf (q) > πN

f for all f ∈ F . In turn, the
proof of the latter assertion is based on showing that the Hessian can be written in the
form Diag(b)+ (1T a)E − c1T − 1cT for some positive vectors a, b, and c satisfying
aibi > c2

i for all i, where 1 and E are respectively the vector and matrix of all ones of
appropriate dimensions, and that a matrix of the latter kind must be positive definite. �


5. Bounding procedures

Returning to the multivariate setting, where each firm’s production set Xf is a compact
convex subset of �N , we focus on the affine payoff function (5). Without loss of gener-
ality, we may take β to be the vector of all ones by a simple scaling of the data and the
variables. Noting the identity

πf (q) =
∥∥∥∥
α

2
− Q−f

2

∥∥∥∥
2

−
∥∥∥∥
α

2
− Q−f

2
− qf

∥∥∥∥
2

− cf (qf ), (16)

we see that q ∈ �δ if and only if q ∈ X and for all f ∈ F , (sinceQ+qf = Q−f +2qf )

‖α −Q−f ‖2 ≥ ‖α −Q− qf ‖2 + 4
[
cf (qf )+ (1− δ) π∗f (q−f )+ δπN

f

]
. (17)

Based on this “dc” (difference of convex) representation of the set �δ , we develop iter-
ative upper and lower bounding procedures for dealing with the optimization problem
(10). It should be noted that while there is an extensive literature on dc programming
(see, e.g., the recent review article [14]), due to the special structure of the problem (10),
we choose to develop the bounding procedures from first principles that are more akin
to the problem on hand. As an example of an alternative iterative bounding procedure,
we mention the “DCA” described in [24], where duality plays a key role. For the lat-
ter algorithm to be directly applicable, it is imperative that the constraints be convex.
Since we cannot guarantee the convexity of (17), the direct application of the DCA is in
jeopardy.
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5.1. Upper bounding

The boundedness of the set X induces an upper bound, which we denote κf , on the
quantity ‖α − Q−f ‖2 for each f ∈ F . Alternatively, if Xf is contained in the non-
negative orthant (which is a typical situation in applications) and if the cost function cf
is nonnegative, then the constraint (17) itself trivially induces an upper bound on each
‖qf ‖, and thus on ‖α −Q−f ‖2 for all f ∈ F . In what follows, we take the bound κf
to be a readily available quantity.

Consider the following set which involves the auxiliary variables ξf for f ∈ F :

�δ ≡ { ( q, ξ ) ∈ X ×�|F | : for all f ∈ F, ξf ≤ κf

ξf ≥ ‖α −Q− qf ‖2 + 4 [ cf (qf )+ ( 1− δ ) π∗f (Q−f )+ δ πN
f ]

ξf ≥ ‖α −Q−f ‖2

ξf ≥ ‖α −Q− qf ‖2 + 4 [ cf (qf )+ πN
f ] }.

It is clear that �δ is a “relaxation” of �δ in the sense that if q ∈ �δ , then (q, ξ), where
ξf ≡ ‖α − Q−f ‖2 for all f , belongs to �δ . Moreover, �δ is clearly a convex set. To
recover the set �δ from �δ , we consider the penalization of the next-to-last inequality
in �δ . Specifically, for each scalar ς > 0, we consider the optimization problem in the
variable (q, ξ):

maximize
∑

f∈F

{
log

(
1

4

[
ξf − ‖α −Q− qf ‖2 − 4 ( πN

f + cf (qf ) )
])
+

ς
∑

f∈F

(
‖α −Q−f ‖2 − ξf

)




subject to q ∈ X

and ∀ f ∈ F, ξf ≤ κf

ξf ≥ ‖α −Q− qf ‖2 + 4
[
( 1− δ ) π∗f (Q−f )+ δ πN

f + cf (qf )
]

ξf ≥ ‖α −Q− qf ‖2 + 4
[
πN
f + cf (qf )

]

ξf ≥ ‖α −Q−f ‖2.

(18)

By the next-to-last constraint, the logarithmic term in the objective function is a well-
defined extended-valued concave function, with value equal to −∞ when equality
holds in the next-to-last constraint; the concavity is easy to verify. The penalty term

ς
∑

f∈F

(
‖α −Q−f ‖2 − ξf

)
in the objective function, together with the final constraint,

is intended to force ξf − ‖α −Q−f ‖2 to zero, hence the log part of the objective func-
tion to log θ(q) as ς → ∞. Note that the objective of (18) is a dc function because of
the term ‖α −Q−f ‖2 The next result summarizes several key properties of the above
optimization problem whose maximum objective value we denote ως .
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Proposition 5. Let Xf be a nonempty compact convex subset of �N containing the
origin, and let cf be a nonnegative function. The following statements are valid.

(a) For every ς > 0, ως ≥ max
q∈�δ

log θ(q) ≡ ω∞;

(b) ς1 > ς2 > 0 implies ως2 ≥ ως1 , with equality holding if and only if ως2 = ω∞;

(c) lim
ς→∞ως = ω∞.

Proof. The proposition is a type of exact penalty function result for a constrained opti-
mization problem. For completeness, we give the details of the proof of parts (b) and
(c); part (a) does not require a proof. Let ς1 > ς2 > 0 and let (qν, ξν) denote an optimal
solution of (18) corresponding to ςν for ν = 1, 2. We have

ως2 ≥
∑

f∈F

{
log

(
1

4

[
ξ1
f − ‖α −Q1 − q1

f ‖2 − 4(πN
f + cf (q1

f ))
])

+ ς2

∑

f∈F

(
‖α −Q1

−f ‖2 − ξ1
f

)





≥
∑

f∈F

{
log

(
1

4

[
ξ1
f − ‖α −Q1 − q1

f ‖2 − 4(πN
f + cf (q1

f ))
])

+ ς1

∑

f∈F

(
‖α −Q1

−f ‖2 − ξ1
f

)




= ως1

If ως2 = ως1 , then ‖α −Q1
−f ‖2 = ξ1

f for all f ∈ F . Hence q1 belongs to �δ . Conse-
quently, ω∞ = ως1 ; and so ως2 = ωδ . The converse is obvious.

Let {ςk} be any sequence of scalars tending to∞ and let (qk, ξk) be a corresponding
sequence of optimal solutions of (18). The latter sequence of optimal solutions must be
bounded. If (q∞, ξ∞) is any accumulation point of this sequence, then we must have
‖α − Q∞−f ‖2 = ξ∞f for all f ∈ F because the sequence of optimal objective values
{ωςk } is nonincreasing and bounded below by ω∞, and thus converges. This shows that
q∞ belongs to �δ . �


Ideally, we would like to have a convergent upper bounding procedure that solves
convex optimization subproblems. In addition to a dc programming approach, one way
to achieve this is via a global optimization method, such as that of convex extension and
enveloping [25, 26], possibly embedded within a “branch-and-cut scheme”. Detailed
exploration of such a scheme is beyond the scope of this paper and is under development
in the Ph.D. thesis of Liu.

5.2. Lower bounding

Instead of replacing the left-hand side of (17) by ξf and then penalizing the resulting
inequality ξf ≥ ‖α−Q−f ‖2, we use a first-order approximation of the term ‖α−Q−f ‖2
for the derivation of lower bounds for the collusive game optimization problem (10).
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We recall the blanket assumption that a Pareto improvement q0 exists. By definition,
q0 belongs to the set �δ and satisfies

π∗f (Q
0
−f ) > πN

f , ∀ f ∈ F . (19)

If no such vector q0 exists, then the maximization problem (10) is not interesting at all
because its objective function is identically equal to zero on its feasible set. Noting the
equality

‖α −Q−f ‖2 = ‖α −Q0
−f ‖2 + 2(Q0

−f − α)T (Q−f −Q0
−f )+ ‖Q−f −Q0

−f ‖2,

we see that the set

�δ(q
0) ≡ {q ∈ X : ‖α −Q0

−f ‖2 + 2 (Q0
−f − α )T (Q−f −Q0

−f )

≥ ‖α −Q− qf ‖2 + 4[ cf (qf )+ ( 1− δ ) π∗f (Q−f )+ δ πN
f ] ∀ f }

is a nonempty subset of �δ , nonempty because �δ(q0) contains q0. Moreover, the set
�δ(q

0) is convex because the left-hand side of the inequality in �δ(q0) is a linear
function ofQ−f and the right-hand side is a convex function of (qf ,Q−f ). In essence,
�δ(q

0) is obtained by “semi-linearizing” the quadratic function πf (qf ,Q−f ), whereby
the first term in the right-hand side of (16) is linearized atQ0 and the second term is left
intact.

The next result shows that the inequality (19) continues to hold for all elements of
the set �δ(q0).

Proposition 6. For all q ∈ �δ(q0), π∗f (Q−f ) > πN
f for all f ∈ F .

Proof. Let q ∈ �δ(q0). We know that π∗f (Q−f ) ≥ πN
f for all f ∈ F . Assume for the

sake of contradiction that π∗f (Q−f ) = πN
f for some f ∈ F . We then have

πN
f ≥ πf (q) ≥ 1

4
‖Q−f −Q0

−f ‖2 + ( 1− δ ) π∗f (Q−f )+ δ πN
f ,

which implies Q−f = Q0
−f . This contradicts (19). �


Similar to the restricted set �δ(q0), we consider, for a given vector q0 satisfying
(19), a lower objective function:

χ(q, q0) ≡
∏

f∈F

1

4

[
‖α −Q0

−f ‖2 + 2 (Q0
−f − α)T (Q−f −Q0

−f )

− ‖α −Q− q ‖2 − 4 ( πN
f + cf (qf ) )

]
,

which has the property that

χ(q, q) = θ(q) ≥ χ(q, q0), ∀ q ∈ �δ(q0). (20)
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Taking logarithm of the above lower objective function, we consider the restricted col-
lusive optimization problem:

maximize logχ(q, q0)

subject to q ∈ �δ(q0).
(21)

Defining

ϕf (q, q
0) ≡ 1

4

[
‖α −Q0

−f ‖2 + 2(Q0
−f − α )T (Q−f −Q0

−f ) −

‖α −Q− q ‖2 − 4( πN
f + cf (qf ) )

]
,

we see that ϕf (·, q0) is a concave in the first variable, and that

χ(q, q0) =
∏

f∈F
ϕf (q, q

0).

Moreover, ϕf (q0, q0) = πf (q
0) − πN

f . The following result summarizes some basic
properties of the optimization problem (20) in the case of linear cost function cf (qf ) ≡
cTf qf , where cf is a given vector with components cf i .

Proposition 7. Suppose that Xf is a closed convex subset of �N and that cf i ≥ 0 for
all f and i. Let δ ∈ (0, 1) and q0 ∈ �δ satisfying (19) be given. The following three
statements hold.

(a) The function χ(·, q0) is positive and logχ(·, q0) is strictly concave on�δ(q0); thus,
(21) is a well-defined concave maximization problem.

(b) Problem (21) has a unique optimal solution, say q1, which satisfies

max
q∈�δ

θ(q) ≥ θ(q1) ≥ max
q∈�δ(q0)

χ(q, q0) ≥ θ(q0). (22)

Moreover, θ(q1) = θ(q0) if and only if q1 = q0.
(c) If either [Xf is finitely represented and the Mangasarian-Fromovitz constraint qual-

ification (MFCQ) holds for the set �δ at q0], or [Xf is polyhedral], then θ(q1) =
θ(q0) if and only if q0 is a KKT point of the original collusive game optimization
problem (10).

Proof. For q in �δ(q0), we have

ϕf (q, q
0) ≥ ( 1− δ ) ( π∗f (Q−f )− πN

f ).

Therefore, by Proposition 6, it follows that χ(q, q0), being the product of ϕf (q, q0) for
all f ∈ F , is positive on �δ(q0). Since

logχ(q, q0) =
∑

f∈F
logϕf (q, q

0).
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it follows that logχ(·, q0) is concave on �δ(q0). To show the strict concavity, let τ ∈
(0, 1) and let q and q ′ be two distinct vectors in �δ(q0). For the sake of contradiction,
assume that

logχ(τq + (1− τ)q ′, q0) = τ logχ(q, q0)+ ( 1− τ ) logχ(q ′, q0).

Then we must have, for all f ∈ F ,

ϕf (τq + (1− τ)q ′, q0) = τ ϕf (q, q
0)+ ( 1− τ ) ϕf (q ′, q0),

or equivalently,

‖α − cf − τ Q− ( 1− τ )Q ′ − τ qf − ( 1− τ ) q ′f ‖2 =

τ ‖α − cf −Q− qf ‖2 + ( 1− τ ) ‖α − cf −Q ′ − q ′f ‖2.

By the strict convexity of the Euclidean norm, it follows that Q + qf = Q ′ + q ′f for
all f ∈ F . Summing up these equalities over all f ∈ F yields Q = Q ′, which in
turn implies q = q ′. Consequently, the strict concavity of logχ(·, q0) follows. This
establishes (a).

The existence and uniqueness of q1 do not require a proof. The first inequality in
(22) is obvious because �δ(q0) is a subset of �δ; the second inequality is due to (20);
and the third inequality is because �δ(q0) contains q0. If θ(q1) = θ(q0), then we must
have χ(q1, q0) = χ(q0, q0), which shows that q0 is an optimal solution of (21). By the
uniqueness of q1, it follows that q1 = q0. Hence (b) holds.

Under the assumptions of part (c), the KKT conditions are necessary optimality con-
ditions for (21). Hence, for Xf represented by (11), there exist multipliers λf ∈ �mf
and ηf ∈ � such that, for all f ∈ F ,

0 =
∑

f �=t∈F

Q1 + q1
t −Q0−t

2 ϕt (q1, q0)
+
Q1 + q1

f − α + ∇cf (q1
f )

ϕf (q1, q0)
+

mf∑

i=1

λf i ∇gf i(q1
f )

+ 4 ηf
[
q1
f +Q1 − α + ∇cf (q1

f )
]

+
∑

f �=t∈F
2 ηt

[
( 2 q1

t +Q1
−t −Q0

−t )− 4 ( 1− δ ) q∗t (Q1
−t )

]

0 ≤ λf ⊥ gf (q
1
f ) ≤ 0

0 ≤ ηf ⊥ ‖α −Q0
−f ‖2 + 2 (Q0

−f − α )T (Q1
−f −Q0

−f )

− ‖α −Q1 − q1
f ‖2 − 4 [ cf (q

1
f )+ ( 1− δ ) π∗f (Q1

−f )+ δ πN
f ] ≥ 0.
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If θ(q1) = θ(q0), then q1 = q0. Hence the above KKT system reduces to

0 =
∑

t∈F

q0
t

πt (q0)− πN +
Q0 − α + ∇cf (q0

f )

πf (q0)− πN +
mf∑

i=1

λf i ∇gf i(q0
f )

+ 4 ηf
[
q0
f +Q0 − α + ∇cf (q0

f )
]
+ 4

∑

f �=t∈F
ηt

[
q1
t − ( 1− δ ) q∗t (Q0

−t )
]

0 ≤ λf ⊥ gf (q
0
f ) ≤ 0

0 ≤ ηf ⊥ πf (q
0)− ( 1− δ ) π∗f (Q0

−f )− δ πN
f ≥ 0.

With a moment’s verification, the reader can easily see that the above is precisely the KKT
system of (10) at q0. Conversely, if q0 satisfies the latter KKT system, then q1 ≡ q0 sat-
isfies the former KKT system. Since (21) is a concave maximization problem, it follows
that q0 is an optimal solution to it. �


Based on Proposition 7, we propose an iterative algorithm for computing a KKT
point of (10). The algorithm requires an initial vector q0 ∈ �δ satisfying (19). Such a
vector can be computed either by first solving the convex program (9) followed by an
Armijo-type line search as instructed by Proposition 3, or by employing Corollary 1 if
the latter is directly applicable.
An Iterative Lower Bounding Algorithm.

Step 0 Assume that a vector q0 ∈ �δ satisfying (19) is given. Let k = 0.
Step 1 Solve the concave maximization subproblem:

maximize logχ(q, qk)

subject to q ∈ �δ(qk),
(23)

and let qk+1 be the unique optimal solution.
Step 2 If θ(qk+1)− θ(qk) is less than a prescribed tolerance, stop. Otherwise, let k←

k + 1 and return to Step 1.

Consider an infinite sequence {qk} generated by the algorithm. This sequence is
contained in the bounded set �δ . It therefore has at least one accumulation point. The
sequence of positive scalars {θ(qk)} is strictly increasing and bounded above; it therefore
converges. Consequently, we have

lim
k→∞

θ(qk+1) = lim
k→∞

χ(qk+1, qk).

Since this common limit is bounded below by the positive scalar θ(q0), it follows that

lim
k→∞

‖Qk+1
−f −Qk

−f ‖ = 0, ∀ f ∈ F . (24)

Based on the above limit, we can establish the desired KKT property of an accumulation
point of the sequence {qk}.



428 J.E. Harrington et al.

Proposition 8. Suppose that Xf is a closed convex, finitely represented subset of �N
and that cf (qf ) = cTf qf , where each constant cf i is nonnegative. Let δ ∈ (0, 1) and

q0 ∈ �δ satisfy (19). The following two statements are valid.

(a) Every accumulation point of the sequence {qk} belongs to �δ .
(b) If q∞ is the limit of a convergent subsequence {qk+1 : k ∈ K} for some infinite

subset K such that q∞ satisfies the MFCQ for the set �δ , then q∞ is a KKT point
of (10).

Proof. It suffices to prove (b). Since q∞ belongs to �δ , it follows that πf (q∞) ≥ πN
f

for all f ∈ F . Since θ(qk) ≥ θ(q0) > 0 for all k, we must have πf (q∞) > πN
f for all

f ∈ F . Since qk+1 satisfies

πf (q
k+1)− 1

4
‖Qk+1
−f −Qk

−f ‖2

= 1

4

[
‖α −Qk

−f ‖2 + 2(Qk
−f − α)T (Qk+1

−f −Qk
−f )− ‖α −Qk+1 − qk+1

f ‖2
]

− cf (qk+1
f )

≥ ( 1− δ ) π∗f (Qk+1
−f )+ δ πN

f ,

and since the MFCQ is invariant under small function perturbations, it follows from (24)
that the KKT conditions for (21) must necessarily be satisfied by its optimal solution
qk+1. Therefore, there exist multipliers λk+1

f ∈ �mf and ηk+1
f ∈ � such that, for all

f ∈ F ,

0 =
∑

f �=t∈F

Qk+1 + qk+1
t −Qk−t

2 ϕt (qk+1, qk)
+
Qk+1 + qk+1

f − α + ∇cf (qk+1
f )

ϕf (qk+1, qk)

+
mf∑

i=1

λk+1
f i ∇gf i(qk+1

f )+ 4 ηk+1
f

[
qk+1
f +Qk+1 − α + ∇cf (qk+1

f )
]

+
∑

f �=t∈F
ηk+1
t

[
2 ( 2 qk+1

t +Qk+1
−t −Qk

−t )− 4 ( 1− δ ) q∗t (Qk+1
−t )

]

0 ≤ λk+1
f ⊥ gf (q

k+1
f ) ≤ 0

0 ≤ ηk+1
f ⊥ ‖α −Qk

−f ‖2 + 2 (Qk
−f − α )T (Qk+1

−f −Qk
−f )

−‖α −Qk+1 − qk+1
f ‖2 − 4

[
cf (q

k+1
f )+ ( 1− δ ) π∗f (Qk+1

−f )+ δ πN
f

]
≥ 0.

From (24), we deduce

lim
k(∈K)→∞

ϕf (q
k+1, qk) = πf (q

∞)− πN
f > 0.

The sequences of multipliers {λk+1
f : k ∈ K} and {ηk+1

f : k ∈ K} are bounded, by
the MFCQ. Without loss of generality, assume that these two sequences of multipliers
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converge to λ∞f and η∞f , respectively. To show that q∞ is a KKT point of (10), we note
that

πf (q
∞) = lim

k(∈K)→∞

{
1

4

[
‖α −Qk

−f ‖2 + 2(Qk
−f − α )T (Qk+1

−f −Qk
−f )

−‖α −Qk+1 − qk+1
f ‖2

]
− cf (qk+1

f )

}

and

lim
k(∈K)→∞

q∗t (Q
k+1
−t ) = q∗t (Q

∞
−t ),

where the limit is due to the continuity of the optimal response function. Passing to the
limit k(∈ K)→∞ in the above KKT conditions for (21), we deduce

0 =
∑

t∈F

q∞f
πf (q∞)− πN

f

+
Q∞ − α + ∇cf (q∞f )

πf (q∞)− πN
f

+
mf∑

i=1

λ∞f i ∇gf i(q∞f )

+4η∞f
[
q∞f +Q∞ − α + ∇cf (q∞f )

]
+ 4

∑

f �=t∈F
η∞t

[
q∞t − ( 1− δ ) q∗t (Q∞−t )

]

0 ≤ λ∞f ⊥ gf (q
∞) ≤ 0

0 ≤ η∞f ⊥ πf (q
∞)− ( 1− δ ) π∗f (Q∞−f )− δ πN

f ≥ 0.

It can be verified that the latter system is precisely the set of KKT conditions for (10). �


6. Computational results

In this section we report computational results with the numerical solution of some
test problems to illustrate the differences between the Nash quantities and prices and
those obtained by collusion and to demonstrate the effectiveness of the two bounding
procedures. We ran three sets of experiments. The first set pertains to univariate firms
where Proposition 4 is applicable; the second and third set of runs pertain to firms with
multivariate decision variables and are aimed at testing the effectiveness of the bounding
schemes in comparison with some publicly available nonlinear program (NLP) solvers
that are available on the NEOS website; see below for details.

6.1. A univariate problem

Demonstrably a concave maximization problem, the first test problem has 6 univariate
firms. The price function is given by

p(Q) ≡ 40− 0.08Q;
the other data for the problem are summarized in Table 1. We wrote a simple AMPL
program [8] to compute the Nash quantities qN

f for the firms and submitted it to the
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Table 1. A 6-firm problem with δ = 0.6

Firm CAPf cf qN
f πN

f capa- q
opt
f π

opt
f π∗f (Q−f ) incentive

citated? compat.
binding?

A 60 15 60 516 Yes 44.795 604.030 736.10 Yes
B 20 15 20 172 Yes 18.329 247.158 267.00 No
C 55 20 45 162 No 27.818 236.014 347.00 Yes
D 48 20 45 162 No 26.822 227.570 325.90 Yes
E 25 20 25 90 Yes 16.182 137.190 194.90 No
F 10 15 10 86 Yes 10 134.843 134.80 No

NEOS server at Argonne National Laboratory (http://www-neos.mcs.anl.gov/neos/) for
solution by the PATH solver, which was jointly written and maintained by Michael Ferris
at the University of Wisconsin, Madison and Todd Munson at Argonne. We next sub-
mitted an AMPL code to solve the collusive game optimization problem with δ = 0.6
and obtained the same solution using three NLP solvers: MINOS, SNOPT and LOQO.
The optimal value function π∗f (Q−f ) is coded according to the explicit expression (15).
Although this function is only once but not twice continuously differentiable, the NLP
solvers have no difficulty dealing with it. The results (rounded to 3 decimal places) are
summarized in Table 1. For this example, firm C and D are Nash-uncapacitated. More
importantly, Proposition 4 is applicable to this example so that the solution reported in
the table is indeed globally optimal. For this problem, all firms’ (except firm F) collusive
production quantities qopt

f are less than their respective Nash quantities, and as expected

all collusive profits πopt
f exceed the respective single-period Nash profits.

6.2. A multivariate problem with decoupled capacities

The next test problem has five firms constrained only by their production capacities in
each of three regions. The production costs and capacities of each firm and the price and
demand intercepts at each node are all given in Table 2. Thus αi ≡ P 0

i and β ≡ P 0
i /Q

0
i

for i = 1, 2, 3. The Nash equilibrium solution for this problem is obtained by PATH and
is reported in the column labelled Nash in Table 3, which also contains the results from
the lower bounding and upper bounding procedures. Some details on the implementa-
tion of the latter procedures are as follows. The starting iterate for the lower bounding
scheme is obtained by lowering the Nash equilibrium solution slightly, resulting in

q0
1 =





55

18

45



 , q0
2 =





46

30

57



 , q0
3 =





96

75

35



 , q0
4 =





21

7

16



 , and q0
5 =





28

53

97



 .

(25)

Each subproblem (23) is solved by PATH applied to its KKT conditions, utilizing a set
of auxiliary variables to handle the profit function π∗f (Q

k+1
−f ) as described in Section 4.
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Table 2. Data for test problem 2

Node (Firm, node) cf i CAPf i P 0
i Q0

i

1 40 500
2 35 400
3 32 640

(1,1) 15 300
(1,2) 15 20
(1,3) 15 50
(2,1) 16 50
(2,2) 16 400
(2,3) 16 100
(3,1) 12 200
(3,2) 12 100
(3,3) 12 40
(4,1) 18 300
(4,2) 18 20
(4,3) 18 150
(5,1) 14 30
(5,2) 14 100
(5,3) 14 400

The results in the lower-bound column in Table 3 are obtained after 28 iterations, with
the relative difference of the Nash bargaining objective at the last two iterations prior to
termination being:

θ(qk+1)− θ(qk)
θ(qk+1)

≈ 3.3582× 10−6.

Since the firms’ constraints are only regional production capacities, the optimal profit
functions π∗f (Q−f ) can again be explicitly represented. However, since there are three
regions involved, each firm f has three decision variables qf i for i = 1, 2, 3; more
importantly, the overall collusive game optimization problem (10) is not shown to be a
concave maximization problem. Nevertheless, most NLP solvers on NEOS were able
to solve the problem; in particular, SNOPT produces a solution that is very close to that
from the bounding procedures. The column labelled Upper Bound in Table 3 is obtained
from solving the penalized problem (18), modified in the following way. Using the vec-
tor q0 in (25), we compute π∗f (q

0
−f ) for all f ∈ F . We then fix all these optimal profits

and solve the resulting problem (18) by the NLP solver, SNOPT6.1, using ς = 1010,
obtaining the solution presented in the upper-bound column in Table 3. While the sum of

the penalty terms after scaling the βi to be unity,
∑

f∈F

(
‖α −Q−f ‖2 − ξf

)
, is−0.09715

at termination, the computed solution in the modified upper bound problem nevertheless
coincides with that obtained from a direct solution of the problem (10) by an NLP solver
on NEOS.

A major motivation in solving this test problem in different ways is to assess the
quality of the solutions produced by the approaches. This assessment is useful because
of the likely nonconvexity of the collusive optimization problem (10) being solved.
With the three objective function values being very close to each other (cf. the last row
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Table 3. Numerical results on test problem 2 with δ = 0.8

Variable Nash Lower Bound Upper Bound NLP

Generation q11 59 55.7603 55.7113 55.7113
q12 20 11.6396 11.6915 11.6915
q13 50 2.6264 2.6231 2.62312

total 129 70.0263 70.0259 70.0259

q21 46.5 50 50 50
q22 30.2857 11.3264 11.2944 11.2944
q23 57.5 0 0 0

total 134.2857 61.3263 61.2944 61.2944

q31 96.5 15.1505 15.1600 15.1600
q32 76 100 100 100
q33 40 40 40 40

total 212.5 155.1505 155.1600 155.1600

q41 21.5 29.3681 29.3557 29.3557
q42 7.42875 0 0 0
q43 17.5 0 0 0

total 46.42875 29.3681 29.3557 29.3557

q51 30 0 0 0
q52 53.1429 0 0 0
q53 97.5 138.9204 138.915 138.915

total 180.6429 138.9204 138.915 138.915

Profits firm 1 545.23 852.0030 852.0331 852.0331
firm 2 418.5495 692.2188 692.1436 692.1436
firm 3 1525.3798 1903.0242 1903.0818 1903.0818
firm 4 57.1211 293.0262 293.0239 293.0239
firm 5 894.0269 1239.5394 1239.5516 1239.5516

NBO θ(q) 0 2.584208E12 2.584210E12 2.584210E12

in Table 3), we are fairly confident that the obtained solution, which is not shown to be
globally optimal, is at least reasonable. This test also demonstrates the effectiveness of
the two bounding procedures.

6.3. A multivariate problem with coupling capacities

Our third test problem involves the following coupling capacity constraint for each firm:

∑

i∈N
qf i ≤ CAPf . (26)

The data are the same as those in test problem 2; in addition, CAP1 = 200, CAP2 = 50,
CAP3 = 200, CAP4 = 150, and CAP5 = 110. The starting iterate for the lower bound-
ing scheme is obtained in the same way as before and is given as follows:

q0
1 =





67

51

80



 , q0
2 =





24

12

12



 , q0
3 =





67

51

80



 , q0
4 =





35

22

30



 , and q0
5 =





41

28

30



 .
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In addition to the lower bounding procedure, we also ran the upper bounding procedure
in the same way as in test problem 2. We have verified that the solution computed by the
latter procedure is feasible to (10); nevertheless, since the modified problem is not the
true upper bound problem (18), we cannot conclude positively that the latter solution is
globally optimal to (10). See Table 4.

Finally, for comparison purposes, we use an NLP solver to directly solve an MPEC
formulation of the collusive game problem (10). Due to the aggregate capacities (26), the
profit function π∗f (Q−f ) no longer has an explicit representation. In order to deal with
this issue, we first observe that the problem (10) is equivalent to the following MPEC:

maximize
∏

f∈F

(
πf (q)− πN

f

)

subject to πf (q) ≥ ( 1− δ )
[
(q∗f )

T ( α − Diag(β) (Q−f + q∗f ) )− cTf q∗f
]
+ δ πN

f ,

0 ≤ 1T qf ≤ CAPf ,
0 ≤ q∗f ⊥ Diag(β)Q−f + 2 Diag(β) q∗f − α + cf + γf ≥ 0,
0 ≤ γf ⊥ CAPf − 1T q∗f ≥ 0.

Table 4. Numerical results on test problem 3 with δ = 0.8

Variable Nash solution Lower bound Upper Bound MPEC

Generation q11 67.2087 73.7309 73.7094 73.7100
q12 51.9174 32.2374 32.2556 32.2537
q13 80.8672 0 0 0

total 172.6016 105.9683 105.9650 105.9637

q21 24.5257 35.9905 35.9814 35.9731
q22 12.8997 0 0 0
q23 12.5745 0 0 0

total 50 35.9905 35.9814 35.9731

q31 67.2087 0 0 0
q32 51.9241 0 0 0
q33 80.8672 195.8417 195.8780 195.8765

total 200 195.7413 195.8780 195.8765

q41 37.2290 39.2440 39.2354 39.2392
q42 24.5141 0 0 0
q43 32.8999 0 0 0

total 94.6430 39.2440 39.2354 39.2392

q51 41.5989 0 0 0
q52 28.5095 86.0862 86.0725 86.0721
q53 39.8916 3.6629 3.6653 3.6665

total 110 89.7491 89.7378 89.7386

Profits firm 1 1044.5708 1275.5888 1275.7010 1275.7203
firm 2 221.3998 434.8644 434.8677 434.7786
firm 3 1644.5708 1963.2681 1963.2527 1963.2404
firm 4 217.5821 395.6882 395.7245 395.7748
firm 5 690.6684 945.9263 945.7592 945.7821

NBO θ(q) 0 7.1450994E11 7.145111E11 7.145107E11
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In order to utilize an NLP solver, we rewrite the two complementarity constraints in the
above MPEC as follows:

( q∗f )
T [ Diag(β)Q−f + 2 Diag(β) q∗f − α + cf + γf ] ≤ 0

( γf )
T (CAPf − 1T q∗f ) ≤ 0.

The resulting nonlinear program remains nonconvex. Yet, SNOPT successfully termi-
nated with a solution reported in the last column of Table 4. Notice that for this test
problem, the solutions produced by the lower and upper bounding scheme are very close
to that produced by SNOPT, thereby once again demonstrating the effectiveness of the
bounding schemes. Note also the closeness of the NBO values produced by the two
bounding schemes.

7. Conclusion

In this paper, we have introduced an optimization formulation for the collusive game
problem and developed upper and lower bounding procedures for its global solution.
We have also obtained numerical results that establish the effectiveness of the bounding
procedures in obtaining viable solutions, which are supported by publicly available NLP
solvers. As the collusive optimization problem is not shown to be convex in general, the
bounding procedures, along with their theoretical properties established in Propositions 5
and 8 and their ability to match the results from the NLP solvers, provide confidence on
the high fidelity of the numerical solutions obtained by all algorithms. The next step in
our research should be application of the proposed model and algorithms to computation
of equilibria for actual markets. This will be reported elsewhere.
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