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Abstract. A third party developer designs and sells a pricing algorithm that enhances a
firm’s ability to tailor prices to a source of demand variation, whether high-frequency de-
mand shocks or market segmentation. The equilibrium pricing algorithm is characterized
that maximizes the third party’s profit given firms’ optimal adoption decisions. Outsourc-
ing the pricing algorithm does not reduce competition but does make prices more sensitive
to the demand variation, and this is shown to decrease consumer welfare and increase in-

dustry profit. This effect is larger when products are more substitutable.
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1. Introduction

As a result of Big Data and algorithmic pricing, firms
can condition prices on high frequency data, tailor
prices to narrow submarkets, and engage in more
effective learning to discover the most profitable
pricing rules. Although there are potential efficiency
benefits from these advances, concerns have been
raised about possible consumer harm. Enhanced
price discrimination due to rich customer data may
increase total welfare but could result in a transfer of
surplus from consumers to firms. Automated pricing
with high frequency data could make markets more
efficient by increasing the speed of response to de-
mand changes, but it is unclear how it will affect
price competition. Learning algorithms fueled by Al
could deliver more profitable pricing rules but that
could be because they facilitate collusion. An active
competition policy debate has arisen regarding algo-
rithmic pricing and whether legal and enforcement
regimes are equipped to deal with the associated
challenges.'

One of the primary implications of Big Data and al-
gorithmic pricing is that it has become more attractive
for a firm to outsource pricing. With prices deter-
mined more by data and less by the judgment of those
employees in the firm with the best soft information,
pricing can be delegated to a third party or to a pric-
ing algorithm developed by a third party. A third
party developer is likely to have better pricing algo-
rithms than would be created internally because it has
more expertise and experience, access to more data,
and stronger incentives to invest in their development
(as the pricing algorithm can be licensed to many
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firms). The use of a third party to provide pricing
services is common on platforms such as Amazon
Marketplace and Airbnb and more broadly in retail
markets (e.g., Assad et al. (2020) offer an analysis of
the use of third party pricing algorithms in retail gaso-
line markets).

Although a firm may find it attractive to use a third
party’s pricing algorithm, the possibility of consumer
harm has been voiced by various competition authori-
ties. For example, the United Kingdom’s Competition
& Markets Authority (2018, pp. 26-27) expressed con-
cern about the anticompetitive risk when “competitors
decide ... that it is more effective to delegate their pric-
ing decisions to a common intermediary which pro-
vides algorithmic pricing services” and noted that “[i]f
a sufficiently large proportion of an industry uses a
single algorithm to set prices, this could result in...
the ability and incentive to increase prices.”

An open question in the area of competition policy
is what the adoption of third party pricing algorithms
means for consumers. Of particular relevance is that a
third party’s incentives when it comes to designing
the pricing algorithm are likely to differ from those of
a firm in a market, for the latter is interested in selling
more units at a higher price, whereas a third party de-
veloper is interested in selling more pricing algo-
rithms at a higher fee. What difference does it make if a
pricing algorithm is designed by a firm interested in maxi-
mizing profit from the sale of the pricing algorithm rather
than from the sale of the product which the algorithm is to
price?

To address this question, a stylized model is devel-
oped with a monopoly developer of pricing algorithms.
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Although, in practice, there are many developers of
pricing algorithms, it makes sense to first explore the
monopoly case before examining the additional implica-
tions of competition among developers. The setting is
one where the pricing algorithm’s comparative advan-
tage is allowing price to condition on a source of de-
mand variation such as high-frequency demand shocks
(or what industry refers to as “dynamic pricing”) or
finely grained market segments (“personalized pricing”).
A third party designs the pricing algorithm and offers it
to firms for a fee. Firms then decide whether to adopt it
and, given those adoption decisions, prices are set.

The paper delivers new insight into pricing algo-
rithms that are summarized here for when demand
variation is significant. A critical distinction between a
pricing algorithm designed by a third party developer
who intends to sell it and a firm who intends to use it
is that the third party will take account of the possibil-
ity that the algorithm might compete against itself;
that is, competitors might adopt the pricing algorithm.
This could lead the third party to make the pricing al-
gorithm less competitive in order to enhance the algo-
rithm’s performance and thus the demand for it.
However, I do not find that to be the case in that out-
sourcing the pricing algorithm does not result in
higher average prices. If the third party had designed
the pricing algorithm to set a higher average price, it
would make it more attractive not to adopt the pricing
algorithm when a firm’s rival does, which would
harm demand for the algorithm. What the third party
does instead is make price more sensitive to demand
variation, thereby generating more profit when and
where demand is strong. By making price more sensi-
tive to demand variation, the third party improves the
profit from joint adoption without making it more at-
tractive not to adopt. Though average price is not
higher, outsourcing still harms consumers because
of increased price variability. Furthermore, this harm
is greater when products are more similar because
prices remain highly sensitive to demand variation
rather than becoming more closely tied to cost, which
is what would occur if there was no outsourcing. In
sum, it does make a difference for the design of a pric-
ing algorithm that it is done by a third party devel-
oper and, furthermore, consumers are harmed.?

This paper contributes to two literatures. Its pri-
mary contribution is to the emerging theoretical litera-
ture exploring the effects of algorithmic pricing.” A
defining feature of these papers is how Big Data and
algorithmic pricing are represented in the model. It
can affect how much information firms have on de-
mand (Miklés-Thal and Tucker 2019, O’Connor and
Wilson 2022), how rapidly firms can respond to rivals’
prices (Brown and MacKay 2022, Leisten 2021), how
firms simultaneously learn about their demand func-
tions and optimal prices (Cooper et al. 2015, Hansen

et al. 2021), and how firms learn the best pricing algo-
rithms (Salcedo 2015, Calvano et al. 2020b, Asker et al.
2021, Klein 2021). All of those studies assume the pric-
ing algorithm is designed by the firm itself and thus
do not consider the implications of it being designed
by a third party with different incentives than that of
the firm. For a more detailed literature review, the
reader is referred to Appendix A.

The second literature to which this paper contrib-
utes is one that examines the welfare effects of third-
degree price discrimination in oligopolistic markets.*
Past research has focused on comparing welfare when
a firm adopts a uniform price (so all markets are
charged the same price) and when it engages in third-
degree price discrimination. The current paper consid-
ers third-degree price discrimination and compares
welfare when outsourcing it to a third party (so it is
designed to maximize the third party’s profit) to
when it is internally developed by the firm (so it is de-
signed to maximize the firm’s profit). As we show, the
deleterious welfare effects of third-degree price dis-
crimination are accentuated when the pricing algo-
rithm is outsourced.

Section 2 provides the general model and character-
izes equilibrium conditions both in the market for
pricing algorithms and the market for firms” products.
Under the assumption of linear demand, Section 3
derives a closed-form solution for the equilibrium
pricing algorithm and Section 4 explores some impli-
cations of outsourcing the design of a firm’s pricing
rule. Section 5 summarizes and offers some directions
for future research.

2. General Model and

Equilibrium Conditions

2.1. General Model

Consider a collection of duopoly markets with differ-
entiated products that differ in cost and demand con-
ditions.” The set of market types is the finite set  and
A(h) is the number of markets of type h € H. For a
type h market, ¢" is the common and constant mar-
ginal cost, and D;(p1,p2,a,h) : ‘Ri X A X H — R, is the
(symmetric) firm demand function, which depends on
firms’ prices (p1,p2) and a demand variable a € A with
cdf G: A X H — [0,1]. The demand variable a has two
interpretations. A firm in market & could be facing a
single demand curve and a is a demand shock with
distribution G. In that case, price may condition on
the current demand shock a. Alternatively, a firm in
market /1 faces a collection of market segments repre-
sented by G. In that case, price may condition on the
market segment 2. We will generally use the “demand
shock” interpretation in our exposition. Further de-
mand assumptions will be made in Section 3. It is
generally assumed A =[g,a] and G is continuously
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differentiable though all analysis goes through if in-
stead A is a finite set.’

Let us initially suppose the demand shock a
occurs at a higher frequency than a firm’s pricing
decisions (or, when G represents a collection of mar-
ket segments, the firm cannot distinguish among
them). In that case, a firm is incapable of condition-
ing price on it and, therefore, its price depends only
on G. A symmetric Nash equilibrium price pN(h) is
defined by:

) =argmax [ (p=)Di(p,p00),0, 1) (0, .
peR.

As a convention, G'(a,h) = dG(a, h)/da.

The comparative advantage of the third party de-
veloper is that it can offer a pricing algorithm capable
of tracking the high-frequency demand shock (or mar-
ket segment) a so a firm’s price can then condition on
it. This algorithm is denoted ¢ : A X H — R,. When a
is a demand shock then ¢ assigns a price to each pos-
sible demand shock in A, and when a is a market seg-
ment then {¢},c, is the vector of prices assigned to
the set of market segments A. Once adopted by a firm,
the algorithm is assumed to “learn” the firm’s de-
mand parameters, while a firm can program in its
cost. As a result, ¢ conditions on / even though the
third party may not know a particular market’s type.
Let ® denote the space of mappings from A X H into
the price space R,.

The third party chooses a fee f, which a firm pays in
order to adopt ¢. As the fee is set ex ante, it is uniform
across markets. For reasons of competition law, the
fee is not tied to an adopting firm’s profit. Given that
both firms may adopt the algorithm, a third party that
was compensated based on competitors” profits could
effectively act as a cartel manager and coordinate
firms’ prices. It is also for this reason that the algo-
rithm is not permitted to condition on the adoption
decision of another firm in the market. If that were
allowed, the algorithms could be programmed to
“communicate” and coordinate their prices in the
event that both adopted, which the third party may be
inclined to do in order to generate more value for
firms, which would then allow it to charge a higher
fee.”® As I'll later show, in spite of these restrictions,
outsourcing can cause consumer harm.

Next to be described is the sequence of moves and
what agents know. In the first stage, the third party
designs the pricing algorithm and sets the fee; that is,
it chooses (¢(-),f) e PxNR,. In the second stage,
(¢(-),f) is publicly revealed and firms make simulta-
neous adoption decisions. After adoption decisions
are made and publicly observed, the third stage has
the high-frequency demand shock realized and firms
make simultaneous price decisions.” The solution concept

is Subgame Perfect Equilibrium. In that final stage, if
both firms did not adopt the pricing algorithm, then
equilibrium prices are pN(h). If both firms adopted,
then they price at ¢(a,h). If one firm adopted and the
other firm did not adopt, then the former prices at
¢(a,h) and the latter, which cannot condition its price
on 4, chooses a best response to ¢(a, h) given its beliefs
G on a. The assumption that ¢(-) is public information
is clearly stylized but allows firms to form accurate be-
liefs on the profit associated with adoption and for a
nonadopting firm to form accurate beliefs on an adopt-
ing firm’s price."’

Before moving on, it is worth noting that an adopt-
ing firm is unable to modify the pricing algorithm. I
am presuming the pricing algorithm is a “black box”
to the firm so it cannot disentangle the demand state
and start changing the price attached to it. Although I
believe there are situations where such an assumption
is appropriate (as the firm lacks the necessary knowl-
edge), there are also situations where some modifica-
tion would be possible. In exploring the latter, one
would want to consider the constraints on a firm’s
ability to modify the algorithm lest one trivializes the
role of a third party developer. This extension of the
model is left for future research.

2.2. Equilibrium Conditions

Toward specifying the conditions defining the equi-
librium pricing algorithm, we will begin by charac-
terizing the market demand for pricing algorithms.
For that purpose, let V(I;,I;, ¢, ) denote gross profit
(before netting out the third party’s fee) for a firm
with adoption decision I; € {A,NA} given the other
firm’s adoption decision I; € {A,NA}, where A refers
to adoption and NA to no adoption. The explicit ex-
pressions for V(I;,I;, ¢, h) are provided later. A firm’s
total cost of adoption is f+¢ where f is the fee
charged by the third party and ¢ is a market-specific
adoption cost, which is observable to the firms but
not to the third party. ¢ is introduced so the proba-
bility of adoption is a smooth function of ¢ and
f. € has a continuously differentiable cdf K:®R, —
[0,1] and K puts sufficient mass near zero so that, at
the equilibrium design and fee, there is positive ex-
pected demand."'

Derivation of the demand for pricing algorithms re-
quires characterizing equilibrium adoption decisions.
It is an equilibrium for a market to have zero adop-
tions when:

V(NA,NA,,h) > V(A NA, b, h) — (f + &) =
f+e> V(A NA ¢ h) - V(NA NA,d, h);

that is, the incremental value of adoption conditional
on the rival firm not adopting is less than the cost of
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adoption. It is an equilibrium for a market to have one
adoption when:
V(A,NA,¢,h) — (f +€) > V(NA,NA, ¢, h) and
V(NA,A,¢,h) > V(A,A ¢, h)—(f +¢),
where the first inequality says it is optimal for a firm
to adopt given the rival firm does not adopt and the
second inequality says it is optimal for a firm not to

adopt given the rival firm does adopt. Those condi-
tions are equivalent to:

V(A,NA,¢,h) = V(NA,NA, ¢, h) > f + ¢
> V(A,A,¢,h) = V(NA,A, O, h).
Finally, it is an equilibrium for a market to have two
adoptions when:
V(A,A,¢,h)—(f +¢) > V(NA,A,¢,h)
= V(A,A ¢,h) - V(NA,A, ¢, h)
>f+e,

so the incremental value of adoption conditional on

the rival firm adopting exceeds the cost of adoption.
If

V(A,NA, ¢, h) — V(NA,NA, ¢, h) > V(A, A, ¢, h)
- V(NA/A/ ¢/ h)/
1)
so adoptions are strategic substitutes, then, generi-

cally, there is a unique equilibrium number of adop-
tions. If

V(A,A,¢,h) = VINA, A, ¢, h) > f +¢ )

then the market has two adoptions; if
V(A,NA,¢,h) = V(NA,NA, ¢, h) > f + ¢

> V(A A ¢,h) - V(NA A, ¢, h), ©)

then the market has one adoption; and if f + ¢ > V(4,
NA,$,h) - V(NA,NA,$,h), then the market has zero
adoptions.
If instead
V(A,A,¢,h)—V(NA,A,¢,h) > V(A NA, ¢, h)
- V(NA,NA, ¢, h),
so adoptions are strategic complements, then the equi-
librium number of adoptions is zero or two. If V(A,
NA,$,h) - V(NA,NA,$,h) > f + ¢ then the market has
two adoptions, and if
V(A,A,¢,h) = VINA,A,¢,h) > f + ¢ > V(A,NA, ¢, h)
- V(NA,NA, ¢, h)

then the market has either zero or two adoptions.
When it is an equilibrium to have either zero or two

adoptions, an equilibrium selection is made that both
adopt.'

The market demand for the third party’s pricing
algorithm is composed of those markets for which
one firm adopts—(3) is satisfied—and those for which
two firms adopt—so (2) is satisfied. The resulting de-
mand is

> [1 x max{K(V(A,NA, ¢, h) - V(NA,NA, ,h) - f)
heH

- K(V(A/ A/ (P/ h) - V(NA/ A/ (P/ h) _f)/ O}
+2 X K(V(A,A,¢,h) - V(NA,A, ¢, h)—f)IA(h) 4)

where recall A(h) is the number of type i markets. The

first term in brackets is demand coming from markets

where one firm adopts the pricing algorithm. When

(1) holds, it equals

K(V(A,NA,p,h)— V(NA,NA,¢,h) —f) - K(V(A,A, P, h)
- V(NA,A,¢,h)—f),

and when (1) does not hold then it is zero. The second
term in (4) is demand coming from markets where both
firms adopt, and is the probability that (2) is satisfied."

The third party chooses the design and fee to maxi-
mize its expected revenue.'* The equilibrium design
and fee are the solution to:

@ f)
= X 1x K(V(A,NA, b, h
e (%gé%);%f I%_]{ [1 x max{K(V( 1)

— V(NA,NA, ¢, h) - f)
—-K(V(A,A,d,h)— V(NA,A, ¢, h)—f),0}
+2 X K(V(A,A,¢,h) - V(NAA, ¢, h)—f)IAh) (5)

where
V(A, A, &, h) = / (6, - ")
Di(¢p(a, h), ¢(a, h),a, )G’ (a, h)da
VA NA, G, = [ (¢fa ) - )
Dy(éa, h), p (b, ), a, )G (a, h)da
VINA, A, ¢, h) = / (7,1 - c")
Da(p* (¢, h), p(a, h),a, )G’ (a, h)da
V(NA,NA, ¢, h) = / (pN(h) - ch)

Dl(pN(h), pN(h),a, h)G’(a, h)da

(6)

(9, h) = argmax / (= Ds (p, §(a, ), a, )G’ (a, h)da
@)
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Using the expression for market demand in (4), (5) is
expected revenue. Given its rival adopts ¢, the opti-
mal price for a firm that does not adopt is p*(¢,h) as
defined in (7). p*(¢p, h) along with ¢ are used to define
firms’ values when one adopts and the other firm
does not—V(A,NA,¢,h) and V(NA,A,$,h)—as pro-
vided in (6). Equation (6) also defines a firm’s value
when both adopt, V(4,A,¢,h), and when neither
adopts, V(NA,NA,$,h). We next turn to deriving a
closed-form solution for (5).

3. Equilibrium Under Linear Demand
For purposes of tractability, from here on, linear de-
mand is assumed:

Di(p1,p2,a,h) = a—bpy +dps,

where b >d > 0. Recall that 2 ~ G and let 2 have mean
¢ and variance o?. Assume a—(b—d)c>0 Va€ A so
demand is always positive. To save on extraneous no-
tation, the market type & is dropped though it should
be remembered that the pricing algorithm is designed
for each market type.

3.1. Benchmark Equilibria
Suppose there is no third party and the firms are un-
able to condition price on the demand shock. In that

case, the symmetric Nash equilibrium is pN = &% with
expected profit of

b(u— (b —d)c)’

2b-d)?

~N_ [[u+bc u+be
? = Jlmefe-e-ola)

Although this is a relevant benchmark, it is not the ap-
propriate one for assessing the effect of outsourcing
because the use of a third party’s pricing algorithm
confounds outsourcing with engaging in third-degree
price discrimination (with respect to the demand vari-
able a). In order to separate these effects, the proper
benchmark is when firms condition price on the de-
mand shock but use a pricing algorithm that each firm
internally develops in order to maximize its profit.
This is the standard Nash equilibrium with third-
degree price discrimination, qu (a) = g;f; where [ refers
to “internal development.”

Although expected price is the same as when
firms do not condition on the high-frequency de-

G'(a)da =

mand shock, E [cpI @] = %, expected profit is higher
with ¢/,
p_blp=(b-d))*  bo? N

= + > 7,

(2b - d)* (2b - d)*

because a firm is able to raise price when demand is
stronger (and more price-inelastic) and lower price
when demand is weaker (and more price-elastic). By
comparing the third party’s equilibrium pricing algo-
rithm ¢ with ¢!, we will identify the difference due
to outsourcing or, alternatively stated, to the pricing
algorithm having been designed to maximize the
profit from selling the algorithm (i.e., the developer’s
profit) rather than from using the algorithm (ie., a
firm’s profit).

3.2. Characterization Theorems

In solving (5), the focus is on affine pricing algorithms:
¢(a) = a +ya for some (a,y)."” Prior to presenting our
characterization theorems, it will prove useful to ini-
tially consider a constrained problem for the third
party. Suppose the third party chose to optimize while
ensuring that adoptions are (weakly) strategic com-
plements, which means ¢ satisfies:

V(A,A,¢)— V(NA,A,¢) > V(A NA,$) — V(NA,NA, ).

In that case, the expression in (4) for expected demand
is K(V(A,A,¢)—V(NA,A,¢)—f). As long as K(V(A,
A, ) - V(NAA,¢)—f)>0 for some ¢, then maximiz-
ing that expression is equivalent to maximizing the in-
cremental value of adoption conditional on the rival
firm adopting, V(A, A, ¢) — V(NA, A, ¢). Consequently,
the pricing algorithm is designed to solve:

max V(A,A,$) - V(NA,A,¢)
st. V(A,A,0) - V(NA,A,¢) > V(A NA,¢)
- V(NA,NA, ¢). ®)

It is shown in Appendix B (Lemma B.1) that the solu-
tion to (8) is:

N e v T Sl T

Now let us turn to solving (5). We'll initially consider
the case when demand is relatively stable, which in-
cludes 62 = 0 so there is no demand variation. Theorem 1
shows that the third party designs the pricing algorithm
to make one firm into a price leader (which is why the
pricing algorithm is denoted ¢"). By adopting the third
party’s pricing algorithm, a firm commits to a higher av-
erage price, which induces its nonadopting rival to raise
its price, and that is what makes it profitable for the firm
to adopt. Proofs are in Appendix B.'

2(b—d)bc —du ( 1 )a

Theorem 1. If 62 is sufficiently low, then the unique equi-
librium pricing algorithm is

ol (b+d)((2b—d)bc+du) (1
N 77T s W oA

and either no firm adopts or one firm adopts.
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It is straightforward to show that the pricing algo-
rithm commits the adopter to a higher average price
than when pricing algorithms are not adopted:

2
o] -p = e )
u+be
S 2b-d
Pp—b-do)

Tab(b-d)2b+d) + 245
As a result, the nonadopting firm prices higher be-
cause its price is the best response to E[¢" (a)],
tt+be +dE[¢F (a)]
2b ’

and

‘u+bc+d((b+d)(2£b2—cdb+dy)+(1

b2 E)#) +be
2b 2b-d

_ @ (u—(b-d))

T 4b(2b(b— d)(2b +d) + d°)

In general, two forces are at play when it comes to
adoption of a third party’s pricing algorithm. First,
adoption means committing to a pricing rule, which
has strategic value but only when the rival firm does
not adopt and thus can respond to that commitment.
Second, adoption means having price condition on
the demand shock. When a market’s demand variance
is low, the second force is sufficiently weak that the
third party designs the pricing algorithm so as to ex-
ploit commitment.

To elaborate on this explanation, consider o2 = 0.
Without any demand variation, commitment to a pric-
ing algorithm is equivalent to commitment to a partic-
ular price. Thus, adoption of the third party’s pricing
algorithm creates a sequential-move price game where
the adopter is the price leader and the nonadopter is
the price follower. As we know that the follower’s
profit is higher than the leader’s in such a game, it is
then an equilibrium for only one firm to adopt (as-
suming f + ¢ is sufficiently low and, otherwise, no firm
adopts). When o2 >0, adoption no longer creates a
sequential-move price game (as the adopting firm’s
price responds to the demand variable at the same
time as the nonadopting firm is choosing its price),
but there is still a benefit from committing to a higher
average price since the nonadopting firm’s price is a
best response to its rival’s average price. As ¢? is in-
creased from zero, the expected profit from adoption
rises because a firm can adjust its price to demand
shocks, whereas the expected profit from nonadoption
is unchanged (as it is based on the adopting firm's ex-
pected price, which is independent of ¢%). As long as

0 is not too high, it will still be an equilibrium for

> 0.

only one firm to adopt and accordingly the third party
designs the pricing algorithm to take advantage of the
commitment that adoption delivers.

Although the preceding analysis is interesting, the
more relevant setting is when ¢? is not low so high-
frequency demand shocks are a significant factor in
the market. That is the setting that is made more com-
mon with Big Data and which makes it especially at-
tractive for a firm to turn to a third party so that it can
condition price on demand fluctuations. Our next re-
sult characterizes the equilibrium pricing algorithm
when the demand variance is high. Now we find the
pricing algorithm is designed to make adoptions into
strategic complements and the third party sells its
pricing algorithm to both firms.

Theorem 2. If o2 is sufficiently high, then the unique equi-
librium pricing algorithm is

s 2(b—d)bc—du 1 _p+bc a-u
O = b—d@b—d) \2b=ad)" " 2—d =24’

and either no firm adopts or both firms adopt.

When demand significantly fluctuates, it is attrac-
tive to a firm to be able to condition price on those de-
mand movements and, consequently, equilibrium has
both firms adopting the pricing algorithm (assuming
f+e is low enough). Anticipating both firms may
adopt, the third party designs the pricing algorithm to
maximize each firm’s willingness-to-pay (WTP) when
both adopt, as that will maximize the likelihood that it
exceeds the adoption cost f + ¢ and thereby result in a
sale. Thus, the design is chosen to maximize the incre-
mental value of adoption, which is V(A,A,¢)—
V(NA,A, ). This then creates a design challenge for
the third party developer: make it profitable to adopt
the pricing algorithm—which encourages designing ¢
so that V(A, A, ¢) is high—while not making it exploit-
able by a nonadopting rival firm—which encourages
designing ¢ so that V(NA, A, ¢) is low.

In solving this challenge, note that the third party
does not design the pricing algorithm to maximize
firms’ joint profit, which would mean maximizing
V(A,A,¢). Consider the joint profit-maximizing (or
monopoly) price as a candidate pricing algorithm:

a+((b-d)
2(b-d) -

If the third party were to use this design, it would result
in a high value of V(A, A, ¢) but also cause V(NA, A, §)
to be relatively high as a nonadopting firm would be
able to exploit the high average price of a rival firm that
has adopted. By instead having the pricing algorithm
price slightly less than p"(a), there is no first-order ef-
fect on V(A,A,¢), but there is a first-order decrease
of V(NA, A, ) because the nonadopting firm finds its

pM (a) = arg rn;ax(p —c)a-b-dp)=
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rival’s price to be lower; hence, it raises the incremental
value of adoption. Consequently, the third party’s de-
sign will have the pricing algorithm price below that
which maximizes joint profit.

Although the price level is less than the monopoly
price, the sensitivity of the pricing algorithm to the de-
mand shock is the same as for the monopoly price,

2p*(a) 1 IpM(a)
dn 2(b—d)  Oa
Thus, the third party’s pricing algorithm shifts down

the pricing rule that maximizes the profit of both firms
adopting:

d(u — (b - d)c)
2Qb—d)b—-d)

Toward understanding the optimality of this rule,
consider how changing the pricing algorithm affects
the incremental value of adoption, V(A,A,¢) — V(NA,
A, ). Given that a nonadopting firm does not condi-
tion on the high-frequency demand shock, the ex-
pected profit of a nonadopter V(NA,A,¢) depends
only on the expected price of its adopting rival, which
is the expectation of ¢. In contrast, given adoption
means conditioning price on the realization of the
demand shock, V(A, A, ¢) depends on the entire distri-
bution of price (based on ¢). Making the responsive-
ness of ¢ to a closer to the responsiveness of the
monopoly price, while keeping the expectation of ¢
fixed, raises the expected profit from adopting with-
out affecting the expected profit from not adopting;
hence, the incremental value from adoption increases.
This explains why d¢*(a)/da € (IpN(a)/da, dp™(a)/da],
and it may be due to linearity that it results in a corner
solution with d¢*(a)/da= JdpM(a)/da. This simple
modification of the monopoly price yields high profit
when both firms adopt without creating high profit
for a firm foregoing adoption and pricing competi-
tively against a rival firm that did adopt.

¢*(a) = p*(a) -

3.3. Market-Specific Fee

When the demand variance is high, the third party
optimally designs the pricing algorithm so that adop-
tions are strategic complements (Theorem 2). Thus,
expected demand is 2 X K(V(A,A,¢p) — V(NA,A, ) —
f) and the equilibrium price algorithm is that which
maximizes the incremental value of adoption given
the rival firm adopts, V(A,A,¢) — V(NA,A,p). When
the demand variance is low, the third party opti-
mally designs the pricing algorithm so that adop-
tions are strategic substitutes (Theorem 1). Expected
demand is

K(V(A,NA,¢) - V(NA,NA, p) - f)
+K(V(A,A,¢) - V(NA, A, §) - f) ©)

and, at the equilibrium pricing algorithm, V(A, A, ¢)—
V(NA,A,$) <0, which implies expected demand sim-
plifies from (9) to K(V(A,NA,¢)—V(NA,NA,¢)—f).
Thus, when the demand variance is low, the equilib-
rium price algorithm maximizes the incremental value
of adoption given the rival firm does not adopt,
V(A,NA, ) — V(NA,NA, p). When the demand vari-
ance is neither low nor high, it is possible the third
party chooses the pricing algorithm so adoptions are
strategic substitutes and V(A,A,¢) - V(NA,A,$) >0,
which means the solution that maximizes (9) will de-
pend on K. That is why equilibrium has only been
characterized when demand variance is low or high
and not for the intermediate case.'® However, if the
fee (as well as the design) is tailored to the market
type and the adoption cost shock ¢ is eliminated, then
the equilibrium pricing algorithm can be character-
ized for all demand variances. That is what we do in
this section.

Without the adoption cost shock, the third party
will know exactly how many firms will adopt depend-
ing on ¢ and f, where both are now set for a market
type. Thus, we can think of the third party deciding to
sell the pricing algorithm to one firm or two firms. If it
decides to sell it to two firms, then the optimal design
is ¢* as that maximizes the WTP and thus maximizes
the fee that can be charged. In that case, the WTP is
the incremental value of adoption conditional on the
rival firm adopting, which (as shown in the proof of

Lemma B.1) is 4(;7—;,) so the optimal fee is f = 4(57:71)' The
third party’s revenue from selling ¢* to two firms
at that fee is z(g—id). If it decides to sell the pricing algo-

rithm to only one firm, then it will want the design to
maximize the incremental value of adoption condi-
tional on the rival firm not adopting, as again that will
maximize the fee that can be charged. The solution to

that problem is gb”l, and the WTP (and fee) can be

Hu--d))’ | 2 s .
Shb—dy @) T 4 which is also the third

party’s revenue.
The difference between the revenue from selling
two units of ¢* and one unit of ¢ is

shown to be

[ Au-b-do® o
2(b—d) \8b(2b—d)>(2b2 —d2) 4b

_(b+d)a® A u—(b—d))
C4b(b—-d)  8b(2b—d)*(2b2 —d?)

It is then optimal for the third party to choose ¢*(¢")
and sell to two firms (one firm) when

(b= d)d*(u - (b - d))*

2
T P — b+ )
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4. Effect of Outsourcing a Firm’s
Pricing Rule

In the remainder of the paper, we’ll focus on the more
interesting and relevant case when the demand vari-
ance is high enough that the third party’s equilibrium
pricing algorithm is ¢* and both firms adopt. In order
to assess the effect of outsourcing, I will compare the
third party’s pricing algorithm ¢* with ¢!, which is the
pricing algorithm that conditions on the demand shock
but is internally developed by the firm so as to maxi-
mize its expected profit. In that way, the effect of out-
sourcing is disentangled from the effect of third-degree
price discrimination. Our primary goal is to shed light
on the structure of the pricing algorithm, which is at-
tributable to it being developed by a third party.

4.1. Sensitivity of Price to Demand Shocks
It will prove instructive to rearrange the equilibrium
pricing algorithm into the following expression:

“ _a+bc d(ﬂ_,u)
¢ (a)—zb_d+2(b_d)(2b—d)'

(10)

By comparison, the pricing algorithm that conditions
on the demand shock that firms would develop on
their own is

a+bc
¢'@) =5 — (11)

Recall that firms price at pV = % when they do not

condition price on the high-frequency demand shock.
The three pricing rules are depicted in Figure 1.

In comparing these pricing rules, the first point to

note is that average price is g’;_l’; whether firms condi-

tion price on the high-frequency demand shock and

Figure 1. Effect of Outsourcing on Prices

¢*“(a)

¢'(a)

whether the pricing algorithm is developed internally
or externally. The second point is that the pricing al-
gorithm is more sensitive to the demand shock when
it is developed by a third party:

dp*(a) 1 1 99'a)
Ja  20-d) 2-d  da

In response to stronger demand, a firm raises its price

but ¢! limits the amount of that price increase because of
the prospect of losing demand to the other firm. How-
ever, the third party’s pricing algorithm internalizes that
effect—as it responds to demand variation as would a
monopolist—and, consequently, price rises more in re-
sponse to stronger demand. Outsourcing the pricing
algorithm then results in greater price sensitivity to de-
mand shocks and, therefore, greater price volatility.

A numerical example illustrates the effect of out-
sourcing on price variability. Assume u=100,b=1,
c¢=10,d =0.6. In the proof of Theorem 2, it is shown
that a sufficient (but not necessary) condition for ¢*
to be the equilibrium pricing algorithm is

2
o> PO D@ =dO _ 155,
2(2b - dP(2b2 - d2)

If a is uniformly distributed on [80,120], then 0% =
133.33 and the above condition is satisfied. The equi-
librium pricing algorithm is ¢*(a) = —46. 43 +1.251
and, consequently, price is uniformly distributed on
[53.57,103.57]. By comparison, ¢'(a) = 7.14 +0.71a and
price is uniformly distributed on [63.94,92.34]. Out-
sourcing increases the range of prices by 76% from
28.40 to 50.00 and more than triples the variance from
67.21 to 208.33.

Before netting out the fee for using the pricing algo-
rithm, expected profit is higher to firms when the pric-
ing algorithm is developed by a third party. Expected
profit under external development is

bp—(-do? o
(2b - d)* 4(b - d)

and with internal development is
b(u — (b —d)c)* L+ d)o?
(2b - d)? 42

The former is larger:

bu=(b-d) o | [ba=-@-d’ (G+do?

Qb-dy?  40-4d) (2b - dy* 4p?
d2g?
TWh-d)

As explained above, the attractiveness of the third
party’s pricing algorithm is that it internalizes the

0. (12)
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effect of one’s firm price on the other’s demand and
profit. Even if firms are capable of developing their
own pricing algorithms at a comparable cost to the
third party, it is collectively advantageous to have
the third party design them."”*’

4.2. Consumer Welfare
To analyze the consumer welfare effects of a third
party’s provision of a pricing algorithm, I draw on some
standard methods developed for third-degree price dis-
crimination. The price discrimination literature has
shown that a sufficient condition for third-degree price
discrimination to lower consumer welfare, relative to a
uniform price, is that total supply does not increase
(Varian 1989). Intuitively, for a given aggregate total
supply, consumer welfare is maximized by equating
marginal utility across markets (or, in the current model,
equating it across demand states), which can only be
achieved with a uniform price. Thus, holding total sup-
ply constant across price regimes, price discrimination
lowers consumer (and total) welfare compared with a
uniform price. If total supply is lower under price dis-
crimination, then consumer (and total) welfare is even
less. A corollary of that general finding is that, when
comparing two price discrimination schemes that pro-
duce the same total supply, the one with more price dis-
persion across markets has lower consumer welfare.
Toward applying that insight, consider the three
pricing rules: (1) uniform price (which does not condi-
tion on the demand shock); (2) internally developed
pricing algorithm, which conditions on the demand
shock; and (3) externally developed pricing algorithm,
which conditions on the demand shock. Letting p(a)
represent a generic pricing rule, all three pricing rules
have the same expected quantity (the analogue to
“total supply”), which follows from them having the
same expected price:

/ (@ = (b—dp@)))G (@a)da = p — (b - d)E[p(a)]

u+ bc) _b(p—(b—d))

2b—d| 2b—d

=u—w—m(

Of course, price dispersion is greater with the inter-
nally developed pricing algorithm than the uniform
price, so consumer welfare is lower with internal de-
velopment. Furthermore, price dispersion with an ex-
ternally developed algorithm exceeds that when it is
internally developed:

da—p) >
22b—d)(b—d) <

Therefore, outsourcing reduces consumer welfare as it exac-

erbates the harm from third-degree price discrimination.”"
Recall from Section 2 that the design and fee structure

were restricted in order not to facilitate coordinated

¢*(a) - ¢'(a) =

Oasaglu‘

conduct, which would harm consumers. First, the fee
was not allowed to be tied to an adopting firm'’s profit.
Without that restriction, the third party could claim a
share of firms’ profit and thus be incentivized to have
the pricing algorithm charge the monopoly price so as to
maximize industry profit. Second, the pricing algorithm
was not allowed to condition on how many firms
adopted. Without that restriction, the third party could
design the algorithm to price at the monopoly level but
only when both firms adopted, and otherwise price
competitively. In spite of those efforts to prevent out-
sourcing from causing consumer harm, we see that
harm still occurs though it is not through higher prices
but rather more volatile prices.

4.3. Product Differentiation
In order to consider the effect of product differentia-
tion, assume a representative agent’s utility function:

1
0141 + O — (5)(51% + Bl + 211192)

where 7 is the degree of product similarity. Firms’
products are independent when 1 = 0 and identical
when 1 = . Solving

1
max 0191 + 02q2 — (5)(5167% + By + 219142) — Prea — Pada

yields firm 1’s demand function (with firm 2’s de-
mand function analogously defined):

1
Di(p1,p2) = (m)(e(ﬁ —1)—pp1+np2) =a—bp +dp;
where
0 B N Ho
a= b= ,d= LU= , (13)
prin ot T B

and p, is the mean of 0. Substituting (13) into
(10)-(11):

2p—m(O+c)—nlug—c) _O+c_nlyy=c)

or@= 2028-1) 2 202-n)
(14)
ol(a) = P=mO*pe_0O+c_nO=c) (15)

2p-n 2 2(2-n)
Differentiating (14)-(15) with respect to the degree of
product similarity parameter 1 yields:**

99*(@) _ —plug—=0) _ . 9*¢(a) _
o p-yt w0
op'@ _ _pO-c _, P¥@__ p
Mo @-n 7 0 (2p)’

Figure 2 depicts the change in the two pricing algo-
rithms when products are less differentiated. For all
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Figure 2. (Color online) Interaction Between Outsourcing
and Product Differentiation

¢*“(a)

¢'(@)

4 M Z a
demand shocks, prices are lower for both pricing algo-
rithms, per the usual explanation. As products are less
differentiated, the internally developed pricing algo-
rithm becomes less sensitive to the demand shock,
which is the consequence of more intense price com-
petition. (Recall that, generally, equilibrium prices
converge to cost when products become homoge-
neous; hence, they become independent of demand.)
In contrast, the sensitivity to demand shocks of the ex-
ternally developed pricing algorithm is unaffected by
a change in the extent of product differentiation. This
singular property is the result of the pricing algo-
rithm’s response to demand shocks being designed to
maximize joint profit and that response is indepen-
dent of product differentiation.

In sum, outsourcing the pricing algorithm results in
price being more responsive to demand shocks and,
furthermore, this greater sensitivity is not diminished
when firms” products are less differentiated. Using
(12) and (13), the differential in expected profit be-
tween external and internal development is

2,52
9%
4p%(B + 1)
which is increasing in 1 (where ¢7 is the variance of
0). As products become more similar, price competi-
tion intensifies less when pricing algorithms are exter-

nally supplied and that enhances the profit from
adoption attributable to outsourcing.

5. Concluding Remarks

The economics and management literature on pricing
is based on the assumption that the firm selling the prod-
uct is also the one that designed its pricing rule.”> Con-
trary to that assumption, we are witnessing a growing

role for third party developers, and little is understood
about the implications of a firm using a pricing algo-
rithm whose design was outsourced. With that moti-
vation, this paper investigated how design incentives
differ between a firm interested in selling the pricing
algorithm and a firm interested in using the pricing algo-
rithm, and what this means for consumers. In conclud-
ing, I summarize some general insight and offer some
directions for future research.

Though the model of the paper has a specific and
stylized structure, it delivers insight that seems intui-
tive and broadly relevant to the outsourcing of pricing
algorithms. In maximizing its profit, a third party de-
veloper designs its pricing algorithm so as to increase
demand for it. In order to encourage multiple firms in
a market to adopt the algorithm, one might think that
a third party developer would make it less competi-
tive. Indeed, a number of competition authorities have
expressed exactly that concern. What is not appreci-
ated is that, if the pricing algorithm sets higher prices,
it will also make it more attractive for a firm not to
adopt because it can profitably undercut the prices set
by rival firms who did adopt. The challenge for the
third party is to design the pricing algorithm so that it pri-
ces cooperatively in a way that allows only a firm with the
pricing algorithm to benefit. In the context of our model
for when there is substantive demand variation, this
tactic manifests itself in making price highly sensitive
to demand variation, which a firm can condition on
only if it has the pricing algorithm. Hence, a firm with-
out the pricing algorithm cannot exploit a firm with
the pricing algorithm. In this way, the third party’s de-
sign raises the profit from adoption without raising the
profit from not adopting, and that increases demand
for the pricing algorithm.

As this is the first investigation of the outsourcing
of pricing rules, there are many research directions.
Building on the model of this paper, one could con-
sider other demand structures. Our results are de-
rived under linear demand with an additive source of
demand variation, and we know from the price dis-
crimination literature that welfare results can depend
on the curvature of demand. Then there are other
types of demand variation including those that affect
the degree of product differentiation as well as firm-
specific demand shocks.

A critical extension is to allow for multiple third
party developers who compete in designing and sell-
ing their pricing algorithms. The introduction of com-
petition raises many relevant policy questions. Does
competition exacerbate or mitigate the consumer
harm when there is a single developer? Does equilib-
rium involve firms adopting from the same devel-
oper? What is the effect of a policy that limits a third
party to supplying at most one firm in a market? With
such a policy, is there a trade-off between reducing
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competition in the market for pricing algorithms and
increasing competition in the product market?

A more fundamental extension is to specify a dif-
ferent space of pricing algorithms. In this paper, a
pricing algorithm conditions on market-specific cost
and demand parameters, and that could be extended
to condition on rival firms’ prices, either prices from
past periods (as in Calvano et al. 2020b) or where
there is a sequentiality to pricing (as in Brown and
MacKay 2022). Third party development is very
likely to affect the design of pricing algorithms. For
example, a firm might design its pricing algorithm to
search for the lowest price among its competitors
and charge a price just below that level. > However,
a third party’s pricing algorithm is unlikely to have
that property for it would result in a downward spi-
ral of prices should competitors adopt it. The ques-
tion then is exactly how a third party developer’s
pricing algorithm will differ from that which a firm
itself would design.

Within this broader class of pricing algorithms, one
could also explore whether it is possible to prevent col-
lusive pricing when competitors adopt pricing algo-
rithms from the same third party. In the model of this
paper, it was prevented by constraining the pricing al-
gorithm so that it does not condition on another firm’s
adoption decision. One could impose an analogous
constraint on this richer space of pricing algorithms by
requiring, conditional on the history, the pricing algo-
rithm to produce the same price regardless of rival
firms’ adoption decisions. We already know from
Calvano et al. (2020b) that collusion can emerge, but
there is the question of whether it becomes easier or
more likely under third party development. A chal-
lenge to the prevention of collusion is that the price his-
tory will vary with rival firms” adoption decisions and
that could provide a path to circumventing the con-
straint. For example, the algorithms could be pro-
grammed to have a pattern in the last two digits of a
price and to shift to “collusive” mode when it observes
that pattern in a rival’s prices.

It seems clear there are many fascinating questions
associated with the third party development of pric-
ing algorithms and a considerable need for more re-
search to address them.
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Appendix A. Literature Review

The theoretical literature examining the implications of Big
Data and algorithmic pricing can be categorized along two
dimensions: 1) the space of pricing algorithms and 2) the cri-
terion for selecting a pricing algorithm. The first dimension
pertains to how Big Data and algorithmic pricing enrich the
feasible set of pricing algorithms. One branch is behavior-
based pricing, which allows price to condition on a custom-
er’s history of purchases (or some other behavior such as
clickstream activity). A second branch focuses on how Big
Data and algorithmic pricing allows a firm to be more in-
formed of demand when it sets price. This can mean using
data to have a more accurate demand forecast or more finely
segment the market or better tailor price to current market
conditions. A third branch examines how pricing algorithms
affect the way in which a firm’s price responds to competi-
tors’ prices in terms of either the speed of response or com-
mitting to a particular response. This review focuses on the
latter two branches, whereas behavior-based pricing is sur-
veyed in Fudenberg and Villas Boas (2007, 2012).

The second dimension is how a firm selects a pricing
algorithm. The conventional approach characterizes equi-
librium pricing algorithms for a well-defined game. An
alternative approach specifies a learning algorithm; that
is, how past data (prices, sales, profits) are used to iden-
tify a better performing pricing algorithm.”> Two classes
of learning algorithms have been considered: estimation-
optimization learning and reinforcement learning. The
former embodies two distinct modules. The estimation
module estimates the firm’s environment and delivers
predictions as to how the firm’s price or quantity deter-
mines its profit or revenue. In particular, past prices and
sales are used to estimate a firm’s demand function
(where various papers have used OLS, Maximum Likeli-
hood, and an artificial neural network), and thereby have
an estimate of how price affects a firm’s profit (or reve-
nue). With that estimated environment, the optimization
module selects price to maximize profit (or revenue) us-
ing the estimated demand function, while adding some
randomness to generate experimentation. An example
discussed below is Cooper et al. (2015), whereas den
Boer (2015) provides an overview of this work.

An estimation-optimization learning algorithm separately
estimates the environment and then optimizes in the selection
of an action for the estimated environment. In comparison, re-
inforcement learning fuses estimation and optimization by
learning directly over actions; it seeks to identify the best action
for a particular state based on how various actions have per-
formed in the past for that state. Its approach is model-free in
that it operates without any prior knowledge of the environ-
ment. One common method of reinforcement learning is
Q-learning. With this approach, there is a value assigned to
each action-state pair (e.g., an action is a price and a state is a
history of prices) and these values are updated based on real-
ized profit. Given the current collection of values and the
current state, the action is chosen that yields the highest value.
Recent papers using Q-learning are Calvano et al (2020b),
Asker et al. (2021), and Klein (2021).%° Hansen et al. (2021) uses
the Upper Confidence Bound algorithm that, for each price,
keeps track of the empirical average of the profit for that price
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and the number of times it was chosen. There is an index that
is increasing in the empirical average profit and decreasing in
the number of times a price was chosen. In any period, the
price with the highest index is chosen, so a price is more likely
to be selected when it has performed better and has been cho-
sen less frequently.

Let me now turn to reviewing those papers that most
directly examine how Big Data and algorithmic pricing af-
fects market competition. The first four papers consider
the impact of Big Data and algorithmic pricing on the pro-
pensity or extent of collusion. Firms interact in an infi-
nitely repeated price game where pricing algorithms can
arbitrarily condition on the history of past prices. Salcedo
(2015) modifies the canonical perfect monitoring setting to
allow for commitment to and observability of pricing al-
gorithms. A pricing algorithm is a finite automaton that
maps price histories into the set of feasible prices. A firm’s
pricing algorithm is a state variable in that it can be
changed only during stochastic revision opportunities. At
such an opportunity, a firm is assumed to know its rival’s
pricing algorithm. Thus, in selecting its pricing algorithm
at a revision opportunity, a firm recognizes it will be com-
mitted to it until the next revision opportunity and,
should its rival have a revision opportunity in the mean-
time, that rival will observe the firm’s pricing algorithm
and know it is committed to it. A striking result is de-
rived: under certain conditions, all subgame perfect equi-
libria result in prices close to monopoly prices. However,
a word of caution, for this result is erected on the untena-
ble assumption that a firm observes a rival’s pricing
algorithm. The presumption is that past price data would
allow a firm to “decode” its rival’s pricing algorithm,
though that cannot generally be possible (e.g., when the
number of observations are fewer than the number of
states in the finite automaton).

Miklés-Thal and Tucker (2019) considers a duopoly with
homogeneous goods where there is one consumer type with
fixed demand. A consumer’s maximum willingness-to-pay
(WTP) can take two possible values and is iid over time. In
each period, firms receive a common signal of the WTP prior
to choosing price. There are two possible signals and p > 1/2
is the probability that the signal is accurate. The influence of
Big Data is captured by a higher value of p; hence, a firm has
better demand information when it chooses price. The anal-
ysis focuses on grim trigger strategy equilibria under perfect
monitoring. A higher value of p has two counteracting ef-
fects on the maximal collusive equilibrium price. More accu-
rate demand information allows the cartel to better predict
the joint profit-maximizing price and that increases the col-
lusive value, which makes collusion less difficult. However,
more accurate demand information also increases the maxi-
mal deviation profit by better informing a prospective devi-
ator when deviation profit is high, which makes collusion
more difficult. When the discount factor is sufficiently high,
more accurate demand forecasting harms consumers. When
the discount factor is sufficiently low, it is possible for con-
sumers to benefit from firms being better informed of
demand.

Closely related in motivation is O’Connor and Wilson
(2022), which also considers the implications of enhanced

demand forecasting though under imperfect monitoring.
Without Big Data, demand is affected by two unobserv-
able demand shocks. With Big Data, one of those demand
shocks is observed so price can condition on that shock.
As with Miklés-Thal and Tucker (2019), the deviation pay-
off is higher because of the improved demand information
that makes collusion harder, but monitoring is more effec-
tive, which makes collusion easier. The net effect on prices
is ambiguous.

The final paper that explores the implications of Big Data
and algorithmic pricing (along with AI) for collusion is
Calvano et al (2020b). This paper assumes each firm uses
Q-learning to discover its pricing algorithm. The central
question is whether collusive pricing rules can emerge un-
der Q-learning and, if so, how robust a phenomenon it is.
For the infinitely repeated price game with differentiated
products, they find it is quite common for prices to converge
to levels well above static Nash equilibrium levels. Further-
more, pricing algorithms evolve to having properties of col-
lusive pricing rules.”” For example, one pricing algorithm
that emerged has firms settle on a supracompetitive price
and, in response to a rival undercutting it, firms’ prices sig-
nificantly drop and then gradually climb back up to supra-
competitive levels. The paper considers many variants of
the basic model in concluding that collusion is a robust out-
come of Q-learning. Firms whose pricing algorithms are de-
termined by a general form of reinforcement learning can
learn to collude. For a critical analysis of Calvano et al
(2020b), the reader is referred to Asker et al. (2021).

The remaining papers show how Big Data and algorith-
mic pricing can result in supracompetitive prices under
static optimization. In Brown and MacKay (2022), the profit
function is fixed and known, and they focus on the implica-
tions of firms being able to respond more rapidly to rivals’
prices. In the context of a duopoly game with differentiated
products, firms can be heterogeneous in the frequency with
which they can change price. For example, one firm may be
able to change price every hour, whereas the other firm can
only change price once a day. This heterogeneity introduces
commitment in that the firm that is locked into its price over
alonger period is effectively a price leader with respect to its
rival. Allowing firms to choose their pricing technologies,
firms are shown to select different frequencies because creat-
ing a leader-follower relationship yields higher prices and
profits for both firms compared with when they simulta-
neously choose prices (which, by the model’s timing struc-
ture, occurs when they choose the same frequency). So as to
ensure itself of being the follower (which is more profitable
than being a leader), one of the firms chooses the most rapid
pricing technology. By allowing firms to commit to a pricing
frequency, Big Data and algorithmic pricing produce higher
prices. Leisten (2021) offers a novel extension whereby a
manager can overrule the algorithm at a cost. There it is
shown the result of Brown and MacKay (2022) is robust, but
there are also some grounds for more collusive outcomes to
emerge.

Cooper et al. (2015) and Hansen et al. (2021) consider a du-
opoly setting with differentiated products, where firms do
not know their demand or profit functions and are endowed
with a learning algorithm. The only available data to a firm
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are its own past prices and profits, which means, in estimat-
ing the relationship between its price and profit, the firm has
a misspecified model that does not take account of the other
firm’s price. With an omitted variable that is endogenous to
what the pricing algorithm does, estimates will be biased. For
example, if, when a firm raises its price, the other firm also
happens to raise its price, then the firm’s demand will be esti-
mated to be less price-elastic than it actually is. Underestimat-
ing the price elasticity of demand would cause firms to set
higher prices than would be achieved for a full-information
equilibrium. Both papers find that this misspecification re-
sults in supracompetitive prices. Cooper et al. (2015) assumes
prices are set optimally given an OLS-estimated demand
curve. Hansen et al. (2021) view it as a multiarmed bandit
problem where a pricing algorithm is chosen to minimize sta-
tistical regret (i.e., the difference between average profit
achieved with the algorithm and ex-post optimal profit).
They find that when the signal-to-noise ratio for sales is high
(i.e., sales are relatively more responsive to price changes
than to demand shocks), firms’ prices are supracompetitive
and positively correlated. It is when learning results in a high
positive correlation that a firm finds a high price relatively
profitable because the rival also tends to set a high price.

Appendix B. Proofs

Lemma B.1. The unique affine solution to
max V(A A, $) - V(NA, A, §) (B.1)
DE!

st. V(AA ) - V(NAA, Q)

> V(A,NA, ) — V(NA,NA, ¢) (®:2)

s 2bc(b—d)—du a
O = - —2db-ad) 26-d)

Proof. Our approach is to solve the unconstrained problem
(B.1) and then show the solution satisfies the constraint
(B.2). Given linear demand and cost and affine pricing algo-
rithms, (B.1) takes the form:

ma / (@ +ya—c)a— (b —d)a+ya)G (a)da

(a, V

2b
(a -b (M) +d(a + ya))G’(a)da.

_ /(M_C)

2b

Taking the integral in the first term and simplifying the
second term yields:

r(geg;(a —op—(a=o)b-d)a+yu) —yub-dea

(1 = be + d(a + yu))®
b ‘

+y (1= y(b - d)(y + %) - (B.3)

Solving the first-order conditions to (B.3) yields:

o obe(b-d)y-du 1
YT l—d) —2db-a)’) T 20-d)

which is ¢*. Referring to the objective in (B.3) as W,
second-order conditions are satisfied:

I W _ (2b-dy B W _ (4b(b—d)(0® + 12) + Py?) 0
da? 2b "oy 2b

PW\PW (Pw 2_02(b—d)(2b—d)2>0
daz [\ 9y2 | \dyda| — b ’

The final step is to show that ¢* satisfies (B.2). It is
straightforward to show:

b(u—(b-dye)}? o2

VAL = e Ta—d)

byt~ (b—d)o)?

V(NA,A,¢*) = T

so the incremental value of adoption when the other firm
adopts is
2

4b—dy

V(A,A,¢%) = V(NA, A, ¢*) = (B4)

Analogously, it can be shown the incremental value of
adoption when the other firm does not adopt is

(b —2d)0?

V(A,NA, %) — V(NA,NA, ¢*) = ORR

(B.5)

Inserting (B.4) and (B.5) into (B.2),

o? (b —2d)o?
>
4b-d)” 4 -ay
= V(A,NA, ¢*) — V(NA,NA, ¢)

V(A,A,¢%) = V(NA,A, ™) =

which holds because

> (b-2d)0* _  do® 0
4b-d)  ab-d? 40b-d)

Lemma B.2 The unique affine solution to
max V(A,NA,¢) — V(NA,NA, ¢)
he
is

o _ (b +d)(2ck? — cdb + dy) L
¢ = b(4b2 — 242) 2b°

Proof. First note that maxgcoV(A,NA, ) — V(NA,NA, ¢) is
equivalent to maxgeoV(A,NA, ¢) given that ¢ does not ap-
pear in V(NA,NA,¢). With affine pricing algorithms,
maXgeo V(A,NA, ¢) takes the form:

u+be+da+yu) -,
T))G (a)da.
(B.6)

r(na>)</(a+ya—c)(a—b(a+ya)+d
a,y
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Taking the integral yields:

p+be+da+yu)
2b

|

w+be+da+ yy)))'

(a—c)u—b(a+w)+d(

+y(p* + ) (1 -by) + yy(—ba + d( %

Solving the first-order conditions delivers:

ek —cdb+ dy) 1
- b —2 VT

which is 11)”1. Referring to the objective in (B.6) as W,
second-order conditions are satisfied:

FW 1, o, PW_ 1,5, 2 2y 2
2 = @ - ) <0, 372——5(2170 +(2b° —d?)u") <0

PW\PW\ (W) L

Proof of Theorem 1. For the purpose of the analysis, the
dependence of values on o2 is made explicit (where recall
that ¢% is an element of a market's type). Given f, the
equilibrium algorithm maximizes expected demand (for a
market type):

max 1 x max{K(V(A,NA, ¢,0*) - V(NA,NA,¢,0*) - f) (B.7)
¢

- K(V(A,A,$,0%) = V(NA,A,$,0%) - f),0}
+2xK(V(A,A,¢,0%) = V(NA,A,p,0%) - f).

Consider ¢?>=0. It is shown in the proof of Lemma B.1
that (for affine pricing algorithms):

T 4(b-d)
which implies max,V(4,4,¢,0) — V(NA,A,¢,0) = 0. Hence,
at the solution to (B.7) for 6> =0,

V(A,A,¢,0)—V(NA,A,$,0)—f=—f<0

max V(A,4,¢,0%) - V(NA,A,$,0°) (B.8)

which implies
K(V(A,A,¢,0) - V(NA,A,¢,0)—f) =0.
Thus, the solution to (B.7) maximizes
K(V(A,NA, ¢,0) — V(NA,NA, ¢,0) - f)

or, equivalently, maximizes V(A,NA, ¢,0) — V(NA,NA, ¢,0).
It is shown in Lemma B.2 that the (affine) solution to max
V(A,NA,¢,0%) - V(NA,NA,¢,0%) is ¢". Hence, if o>=0,
then the equilibrium pricing algorithm is ¢"'.

Now suppose 02 is close to zero. Define ¢°(a,0%) as the
solution to (B.7) for a sequence of values for ¢? that go to
zero: {P°(a,0%)}o_0- As 02— 0, assume ¢’(a,02) differs
from ¢?’I(u) for a set of positive measure of values for a8

I will show 3> 0 such that if 0% € (0,7], then ¢ yields a

strictly higher expected demand than ¢°(62). This contra-
diction will prove the result.

First suppose lim2_,y ¢°(a,0%) = ¢"(a) pointwise in a for
all but a set of measure zero. Thus, ¢°(c?) is close to ¢/
when o2 is close to zero. Note that

0> V(A,A,¢",0)-V(NA,A,¢",0) (B.9)

because, given the adopting rival firm chooses ¢, V(NA,
A,¢",0) is the profit from choosing the unique best re-
sponse to ¢ and V(A,A,¢",0) is the profit from choosing
@"', which is not the best response to ¢*'. By the continu-
ity of V(A,A,¢,0%) — V(NA,A,$,0%) in 6% and ¢ and that,
by supposition, lim,_y¢°(6?) =¢", it follows from (B.9)
that

0> V(A,A,¢°(c°),0°) = V(NA, A, ¢°(0%),0%)
for o2 close to zero, which then implies
K(V(A,A,¢°(0%),0%) = V(NA,A,¢°(0%),0%) - f) =0

for o2 close to zero. Consequently, if ¢°(6?) is the solution
to (B.7), then it maximizes

K(V(A,NA,$,0%) - V(NA,NA, $,0%) - f)

and, equivalently, maximizes V(A,NA,¢,GZ)—V(NA,NA,
$,0%).° However, ¢°(6?) # ¢" for a set of positive mea-
sure delivers a contradiction because ¢/ is the unique (af-
fine) maximum of V(A,NA,¢,02) — V(NA,NA,p,c?). This
completes the proof that, for 02 close to zero, there cannot
be a solution to (B.7) in a neighborhood of (j)”l that is dif-
ferent from ¢/

Now suppose lim,._,y ¢°(a,0%) # ¢ (a) for a set of posi-
tive measure of values for a so the claimed optimum is
not in a neighborhood of ¢”. We know that

lzimo V(A,NA,¢",0%) = V(NA,NA,¢", %) > 0,
gc—
while

121m0 V(A,A,¢",0%) - V(NA,A,¢",6%) <0 (B.10)
(o d

which follows from (B.9) and continuity of V(A,A,qb”l, 0?) -
V(NA,A,¢",0%) in 2. As 6> — 0, we then have™

K(V(A,NA,¢",6?) — V(NA,NA, ¢, %) - f) > 0
=K(V(A,A,¢",0°) = V(NA,A,¢",0%) - f). (B.11)
Given that ¢°(¢?) is bounded away from ¢ as o2 —0
then, given ({)”1 is the unique maximum of V(A,NA,o,
a%) = V(NA,NA, ¢,02),
1211% V(A,NA,¢",0%) — V(NA,NA, ¢, %)
02—
> 121mO V(A,NA,¢°(6%),0%) = V(NA,NA, ¢°(6%),0%). (B.12)
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It then follows: as 6% — 0,
K(V(A, NA, ¢, 62) - V(NA,NA, ¢, 62) - f)
- K(V(A,A,(p”l,az) —V(NA,A, ¢, 0%) - f)
> K(V(A,NA,¢”(02), 0?) = V(NA,NA, ¢°(02), 0%) — f)
- K(V(A,A, ¢°(0%),0%) - V(NA, A, ¢°(?), 02) - f) (B.13)
because the first term on the LHS > first term on the RHS

by (B.12) and the second term on the LHS = 0 < second
term on the RHS by (B.10). Given (B.13) and

K(V(A,NA,¢",6?) - V(NA,NA, ¢, 6?) - f)
—K(V(A,A,¢",0%) = V(NA,A, ¢, 0%) —f) > 0

then the first term in (B.7) is higher with ¢ than ¢°:

lim 1x max{

a2—0

K(V(A,NA,¢",0%)~ V(NA,NA,¢",6%) - f)) 0}

—K(V(A,A,¢",0%) - V(NA,A,",6%)~f)
K(V(A,NA,¢°(02),0%) - V(NA,NA,$*(62),0%) - f)) o}

> lim 1 x max{
’ —K(V(A,A,¢°(0%),0%) = V(NA,A,$°(0%),0%) =f)

d2—0

Hence, a necessary condition for the optimality of ¢° is
that the second term in (B.7) is higher with ¢° than ¢/

lim K(V(A,4,¢(%),0%) = VINA, A,¢°(0), 0°) ~ )

> lim K(V(A,A,¢",6%) - V(NA, A, ¢, %)~ f). (B.14)
a2—0

However, given (B.8) then

lzimo K(V(A, A, ¢°(6%),0%) = V(NA, A, $°(6%),6%) = 0

which implies (B.14) cannot be true. In sum, if ¢°(0?) is
bounded away from ¢ then, for o> close to zero, ¢ has
higher expected demand. Again, we have a contradiction
to the claim that ¢°(0?) is optimal.

We conclude 31 >0 such that if 6 € [0,7] then the solu-
tion to (B.7) is ¢P’. a

Proof of Theorem 2. For the ensuing analysis, we will
break the third party’s optimization problem into two
subproblems. Partition the set of pricing algorithms into
those that result in adoptions being strategic comple-
ments—call that subset of pricing algorithms ®*—and
those for which adoptions are strategic substitutes, ®*.
O ={ped: V(A A %) -V(NAA, p,*)
> V(A,NA,¢,0%) — V(NA,NA, ¢, %)}.
D ={ped: V(A A 0% - V(NAA, %)
<V(A,NA,¢,0%) — V(NA,NA, p,0%)}.
We have already shown ¢* is the solution when the choice
set is @*. Note that the associated expected demand is

2
2K(V(A,A,¢*,0%) = V(NA,A,§*,0°) - f) = 2K(4(;7_d) - f),

Consider the optimal algorithm subject to making adop-
tions strategic substitutes:

¥ = arg max 1 % (K(V(A,NA, $,0%) — V(NA,NA, ¢, 0%) - f)
$ed”

—K(V(A, A, ¢,0%) = VINA, A, ¢,0%) = f))
+2 X K(V(A,A,¢,0%) - V(NA, A, ¢,0%) - f)
= argmax K(V(A,NA, ¢,0%) — V(NA,NA, ¢, d%) - )

+K(V(A,A,¢,0%) — V(NA,A, p,0%) - f). (B.15)

Strategic substitutes and K’ > 0 imply
K(V(A,NA,$,0%) - V(NA,NA, $,0?) - f)
>K(V(A,A,¢,0%) - V(NA,A,¢,0%) —f) YV € D*
and, therefore,
2K(V(A,NA,¢*,0%) = V(NA,NA,¢*,0%) - f)
> K(V(A,NA,¢%,0%) — V(NA,NA, ¢*,6%) - f)
+K(V(A,A,¢%,0%) - V(NA,A,$%,02) - f). (B.16)

Note that the RHS of (B.16) is the maximal value of the
objective in (B.15).
From Lemma B.2,

¢ = arg max V(A,NA, ¢, 0%) - V(NA,NA, §,6°)
€

which means 2K(V(A,NA, ¢",62) - V(NA,NA, ¢, %) - f) is
an upper bound on the LHS of (B.16). Hence,
2K(V(A,NA, ¢, %) - V(NA,NA, ", %) - f)
> K(V(A,NA,¢%,0%) - V(NA,NA, §*,0%) - f)
+K(V(A,A,¢%,0%) - V(NA,A,¢%,6%) - f). (B.17)
In sum, 2K(V(A,NA,¢",0%) - V(NA,NA,¢",6%)—f) is an
upper bound on the expected demand from any ¢ € .
To complete the proof, we want to show: if o2 is suffi-
ciently high, then the expected demand from ¢* exceeds
the expected demand from ¢*,
2K(V(A,A,¢%,0%) = V(NA, A, $*,0%) - f)
> K(V(A,NA,$*,0%) = V(NA,NA, ¢*, %) - f)
+K(V(A,A,$%,0%) = V(NA, A, *,0%) - f), (B.18)
so ¢* is the equilibrium pricing algorithm. Given (B.17), a
sufficient condition for (B.18) is
2K(V(A,A,§%,0%) = V(NA, A, $*,0%) - f)
> 2K(V(A,NA, ¢, 6%) = V(NA,NA, ¢", %) - f)

or, equivalently,

V(A A ¢%,0%) = V(NA,A,§*,0%) > V(A,NA, ¢, 0%
—~V(NA,NA,¢",0?). (B.19)

One can show the RHS of (B.19) is

d4(y —- al)c)2 1),
+|-—|0".
8b(2b — d)*(202 — d2) (4b)
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Using (B.4), (B.19) takes the form:

02 d4(‘u — (b — d)C)z (72
> +—
4(b—d) ~ 8b(2b — d)*(2b> — d2) 4b

or

2 (b - d)(u — (b - d)c)?
‘2@:@@%da'

(B.20)

Thus, a sulfficient condition for ¢* to be the equilibrium
pricing algorithm is that o2 satisfies (B.20). O

Appendix C. Consumer Welfare

Suppose there are two products. It will be sufficient to fo-
cus on when a consumer consumes equal amounts of
them. Let U(g, a) be a consumer’s utility function when
consuming g units of each of the two products and the
state is 4. U is assumed to be concave in . Assume A =
{a1,...,a,} where a; <---<a, and, for convenience, Ja° € A
such that Z]’?;l(l /m)a;=a’. The m states are the analogue
to m markets from the perspective of the price discrimina-
tion literature. Expected utility (or, equivalently, weighted
aggregate utility over the m markets) is

S p(a)Ula(@),a)
=1

where p(a) is the probability of utility state a. Concavity of
U implies concavity of its expectation.

Consider two price and quantity vectors: (p’(a),4'(a)),en
and (p”’(a),q”(a))sepn. Assume p’(a) is nondecreasing in a
and p”(a) is increasing in a. Further suppose p”(a) is
greater (less) than p’(a) as a is greater (less) than a° the
quantities satisfy the relationship implied by these price
vectors under decreasing demand, and the expected quan-
tities are equal in the two configurations:

0

p’(a) %P’(ﬂ) asa %a
q”(a) § q'(a)asa %a"
2@ @) =2 papg” (a).

j=1 j=1

Assuming the quantities correspond to the associated de-
mands, note that these three properties hold when: 1) p’ is
the uniform price pN and p” is the internally developed
pricing algorithm ¢'; and 2) p’ is the internally developed
pricing algorithm and p” is the externally developed pric-
ing algorithm ¢*.

By concavity,

ST pa) U @), a) < S plapUi(q' (@), a)
= =i

n au(y’ (a]), ;)

+Z() 4" (@) = q'(a))).

(C.1)

Given that the quantity is chosen to maximize net sur-
plus U(g,a) —p(a) then JdU(g(a),a)/dq=p(a). As a result,
(C.1) becomes:

ST @)U @), a) < S plap U’ @), a)
j=1 j=1
+ 3 p@)p @) @)~ 4 @),
=1

which delivers an upper bound on the change in con-
sumer welfare:

,Zl p(a) UG (@), - é}p(u,»)uw%aj),a,-)

<330 @) @) -7 @) (€2)

Given that, by construct/ion,
’”'(”O)j_il p@)(q” (@) - 1'(a) = 0

then
jzm;p(u;)r)’(aj)(q”(a;) ~7@)
- ép(ﬂf)p’(aj)(q”(af) @)+ p/(a“)j_ilp(a»(q"(uf) )
- ﬁ;p(aj>(p'(af> P @)@ (@) - 7 @). ©3)
Usi]rlg (C.3), (C.2) becomes

S o) U (@), 1) - 3 pla)U(g (@), a) < S pla) ' @)
=1 =1 =1

P @)@q" @) - q'(a) (C4

The RHS of (C.4) is negative because p’(a;) —p’(a°) <0 and
q"(a;)—q'(aj)) >0 when a;<a’, and p’(a;)—p'(a°)>0 and
9" (a;) - q'(a;) < 0 when a; > a°.

It has then been shown that consumer welfare is highest
with the uniform price, next highest with the internally
developed pricing algorithm, and lowest with the exter-
nally developed pricing algorithm. Given constant and
common marginal cost, the same ordering applies to total
welfare (consumer welfare plus industry profit).

Endnotes

1 Some of that discussion can be found in Mehra (2016), Ezrachi and
Stucke (2017), Johnson (2017), Oxera (2017), Deng (2018), Harring-
ton (2018), Gal (2019), Schwalbe (2019), and Calvano et al (2020a).

2 Outsourcing does result in higher average prices in Harrington
(2020) where it is assumed adoption is exogenous and the third
party designs the pricing algorithm to maximize the expected profit
of an adopter. Here we show that higher prices do not emerge
when adoption is endogenous and the third party designs the pric-
ing algorithm to maximize its expected profit.

3 There is a small empirical literature comprising Chen et al. (2016),
Assad et al (2020), Brown and MacKay (2022), and Leisten (2021).

4 For a survey, see Stole (2007).
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5 The duopoly case reduces the notational burden and is not essen-
tial to the paper’s main insight.

8 For the welfare analysis, A is a finite set so that some previous re-
sults in the literature can be used.

" This restriction is motivated by concerns expressed by various
authorities. The German Monopolies Commission (2018, p. 23) has
warned that a third party, in its design of a pricing algorithm, “could
contribute to a collusive market outcome [and] it is even conceivable
that [they] see such a contribution as an advantage, as it makes the al-
gorithm more attractive for users interested in profit maximization.”
While the OECD (2017, p. 27) has warned: “concerns of coordination
would arise if firms outsourced the creation of algorithms to the same
IT companies and programmers. This might create a sort of "hub and
spoke’ scenario where co-ordination is, willingly or not, caused by
competitors using the same ‘hub’ for developing their pricing algo-
rithms and end up relying on the same algorithms.”

8 Given the private information in the market, the third party might
want to offer a menu of algorithms and fees so that firms from dif-
ferent market types could self-select. That possibility is left to future
research.

9 Even if adoption decisions are not observed, a firm could eventu-
ally infer that the other firm adopted from its high-frequency price
changes.

19 The assumption that ¢(-) is observed should not be taken too lit-
erally and instead seen as a proxy for the steady-state information
that firms would have. For example, a firm that adopts would even-
tually learn the profit from adoption. A firm that does not adopt
would eventually learn the distribution of a rival firm’s price that
did adopt, which is what a nonadopting firm needs to know to set
its optimal price and to know the profit from nonadoption.

" Obviously, the third party will set f so that expected demand is
positive.

2 Qur later analysis will show that this is part of the Pareto domi-
nant equilibrium. It is generally in the interests of the third party to
persuade firms to coordinate on the equilibrium with two adop-
tions as it prefers positive demand to zero demand. As shown in
Sections 3 and 4 when there is linear product demand, a firm’s gross
equilibrium profit is higher when both adopt than when neither
adopts. As a firm’s net profit (gross profit less the equilibrium fee)
must be at least as great as the profit from not adopting and that
profit will be shown to exceed the Nash equilibrium profit when
neither adopts then firms’ net profit from adoption is higher com-
pared with when both do not adopt. In sum, the third party and the
two firms prefer the equilibrium when both firms adopt.

13 Without ¢, there could be many equilibrium designs only because
there are many designs sufficient to result in the incremental profit
from adoption exceeding f. Introducing ¢ rids the model of this
indeterminacy.

4 The design cost of the pricing algorithm is assumed to be indepen-
dent of the design. The cost is also assumed to be sufficiently small
so it is exceeded by the equilibrium revenue. Otherwise, the third
party would not be in the market of supplying pricing algorithms.

18 Although it has not been shown that a solution must be an affine
function, it would be surprising if that were not the case.

18 For Theorems 1 and 2, the uniqueness of the solution assumes 3¢
such that expected demand is positive. That is always true when f =
0. Of course, in equilibrium, f > 0 in which case it is possible ex-
pected demand is zero V¢ for some market types. In that case, any
¢ is a trivial solution. The proofs are for the case when 3¢ such that
expected demand is positive.

7 In another context, Brown and MacKay (2022) examine commit-
ment with regards to the frequency with which price changes.

8 This is also the analytical impediment to allowing for firm-
specific adoption costs as then either one or two firms may adopt in
equilibrium, which causes the characterization of the pricing algo-
rithm to depend on K.

1 This finding offers an interesting contrast from Corts (1998). In the
setting of Corts (1998), price discrimination lowers firms’ profits and
that creates an incentive for firms to adopt practices—such as every-
day low prices—so as make price less variable across demand states.
We have a setting whereby price discrimination raises firms’ profits
and that creates an incentive for them to outsource their pricing algo-
rithms so as to make price more variable across demand states.

201f a firm is given the option to develop its own pricing algorithm,
it remains an open question whether a firm would do so or instead
purchase the third party’s. That question is left to future research.
The maintained assumption of this paper is that the third party is
the sole innovator of a pricing algorithm that can condition on this
source of demand variation.

21 A more detailed proof of this result is provided in Appendix C.
As we know from the price discrimination literature, welfare results
can be sensitive to properties of the demand function; see, for exam-
ple, Cowan (2016). Thus, it is an open question as to whether this
finding extends to some nonlinear demand functions.

22 *(a) and ¢'(a) are derived assuming an interior solution, and
that condition is violated when 1 is close enough to . Thus, in re-
ducing the degree of product differentiation, it is assumed products
remain sufficiently differentiated.

23 Useful starting references _fpr this immense literature are Wald-
man and Johnson (2007) and Ozalp and Phillips (2012).

24 Such a rule was used by a poster seller on Amazon Marketplace
(US. v. Topkins, U.S. Department of Justice, 2015). That there was
collusion in that case is not relevant to the point being made.

25 Almost exclusively, the behavior-based pricing literature is based
on the equilibrium approach.

26 Barlier papers using Q-learning in an environment where multi-
ple firms choose prices or quantities include Tesauro and Kephart
(2002), Xie and Chen (2004), Waltman and Kaymak (2008), Dogan
and Gliner (2015), and Hilsen (2016).

27 “Collusion is when firms use history-dependent strategies to sus-
tain supracompetitive outcomes through a reward-punishment
scheme that rewards a firm for abiding by the supracompetitive
outcome and punishes it for departing from it.” Harrington (2017),
p- L

28 Actually, they must differ by all but a set of measure zero since
algorithms are limited to affine functions.

2% This equivalence does require 3¢ such that K(V(4, A, ¢°(c?),0?) -
V(NA,A,¢°(0%),0%) — f) >0, which is presumed to be true. Other-
wise, expected demand is zero V¢ in which case any ¢ is a solution.

30 This does presume f is small enough that K(V(A,NA, ¢” L o?) -
V(NA,NA,$",6%) - f) > 0. Otherwise, there is a degenerate solution
as expected demand is zero for all ¢.
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