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a b s t r a c t

In the context of an infinitely repeated Prisoners’ Dilemma, we explore how cooperation is initiatedwhen
players signal and coordinate through their actions. There are two types of players – patient and impatient
– and a player’s type is private information. An impatient type is incapable of cooperative play, while if
both players are patient types – and this is common knowledge – then they can cooperate with a grim
trigger strategy. We find that the longer that players have gone without cooperating, the lower is the
probability that they will cooperate in the next period. While the probability of cooperation emerging is
always positive, there is a positive probability that cooperation never occurs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Antitrust and competition law has long recognized that collu-
sion comes in two varieties: explicit and tacit. Explicit collusion
involves express communication among the parties regarding the
collusive agreement—what outcome is to be supported and how it
is to be sustained. Tacit collusion is coordination without express
communication. A common form of tacit collusion is indirect com-
munication through price signaling: A firm raises its price with the
hope that other firms will interpret this move as an invitation to
collude and respond by matching the price increase. As a member
of the 7th Circuit Court, Judge Richard Posner articulated such a
mechanism in the High Fructose Corn Syrup decision:

If a firm raises price in the expectation that its competitors
will do likewise, and they do, the firm’s behavior can be
conceptualized as the offer of a unilateral contract that the
offerees accept by raising their prices.1

A firm raising its price in anticipation that it may be subse-
quently matched is taking a risk because rival firms may not re-
spond in kind, either because they failed to properly interpret the
price signal or deliberately chose not to collude. If the price rise
is not matched then the firm will experience a decline in profit
from a loss of demand. The prospect of such a signaling cost was
well-recognized in the airlines industry where tacit collusion was
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et al., United States Court of Appeals, Seventh Circuit, 295 F3d 651, 2002; p. 2.

implemented not with actual price increases but instead the an-
nouncement of future price increases which could be retracted
(prior to any transactions taking place) in the event that rival firms
did not respond with similar announcements (Borenstein, 2004).
However,when suchprice announcements are unavailable as a sig-
naling device, a firm must then consider the risky route of raising
price without knowing how rivals will react. Of course, a firm al-
ways has the option of waiting on the hope that another firm will
take the initiative of raising the price. The trade-off fromwaiting is
that it avoids the possible demand loss from raising the price but
could delay the time until a collusive outcome is reached.

The objective of this paper is to explore the dynamics associated
with the emergence of tacit collusion towards addressing the
following questions: Is the likelihood of collusion declining over
time? If so, does it converge to zero? If it converges to zero,
does it occur asymptotically or in finite time? That is, does a
sufficiently long string of failed attempts to collude result in firms,
who are willing and able, becoming sufficiently discouraged that
they give up trying to collude? Or is collusion assured of eventually
occurring?

There are two desiderata for a theory to address these questions
and shed light on the emergence of tacit collusion. First, there
must be some reason for a firm to wait rather than simply set
a collusive price. Second, delay must be produced so that there
are some meaningful dynamics. To satisfy the first criterion, we
consider an infinitely repeated two-player Prisoners’ Dilemma
with incomplete information. There are two player types: One type
never colludes, while the other type has the capacity to collude
and will surely do so once convinced its rival is also capable of
colluding. Thus, the value to waiting is learning the other firm’s
type. As our approach will deploy the equilibrium framework,
we will not be exploring the non-equilibrium process by which
players settle upon a collusive equilibrium; players will always
be playing according to some equilibrium. Tacit collusion in our
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setting refers to the coordination on collusive prices within the
context of a particular equilibrium. In other words, a dynamic
equilibrium process is derived that may settle on collusive prices.

The second criterion is that the theory should produce delay
as an equilibrium phenomenon. Delay is required in order to have
dynamics to investigate but is also desirable because it is consistent
with experimental evidence and casual observation of actual
markets.2 In practice, tacit collusion takes time to develop; hence,
an essential property for a theory to shed light on the emergence of
collusion is that it generates delay. To satisfy this second criterion,
our analysis focuses on a class of equilibria that produce delay
with positive probability. A class of equilibria is considered that
has two distinct phases: a learning phase and a collusion phase. In
the learning phase, players are potentially signaling their types in
order to initiate collusion. In the collusion phase, their types have
been revealed and – if, in fact, they are collusive types – collusion
subsequently occurs. This class of equilibria admits equilibria that
are separating, semi-separating, and pooling. Pooling equilibria
are those for which firms never collude so there is no learning
phase. Separating equilibria have firms immediately reveal their
types; hence, collusion occurs either without delay or not at all.
While those equilibria are Pareto-efficient, the learning phase
is minimal and thus they fail to produce the phenomenon that
motivates the analysis. It is semi-separating equilibria that involve
gradual learning and potential delay in achieving a tacitly collusive
outcome. These equilibria encompass not just uncertainty about
the other firm’s type—is my rival willing and able to collude? –
but also uncertainty about what the other firm will do—even if my
rival is willing and able to collude, will it take the lead or wait for
me to make the first move and raise price? This latter uncertainty
arises because a collusive-type firm uses a mixed strategy that
determines whether it takes the initiative by setting a high price
or waits by setting a low price. Embodying both sources of relevant
uncertainty makes these equilibria especially attractive in light of
our objectives.3

To be more concrete, consider the managers of two gasoline
stations located half a mile apart on the same street. Each is
contemplating whether to post higher prices on its station’s sign
or instead deciding to ‘‘wait and see’’ what the other station’s
manager will do.4 Is the other station also contemplating a
collusive price hike but similarly holding off raising price? Or is
the other station oblivious to such reasoning and has no intent
of trying to tacitly collude? As time moves on without any price
hikes, a stationmanager adjusts her beliefs as to whether the other
manager is ‘‘waiting’’ or ‘‘oblivious’’ and modifies her calculus
accordingly in deciding whether or not to go ahead and raise price.
This is the dynamic that is captured by the equilibria characterized
in this paper. Of particular interest is whether, in spite of the
possibility of delay, collusion will eventually occur for sure.

To summarize the main findings, the probability of collusion
emerging in any period is shown to be declining over time but is

2 The dynamics associated with the emergence of tacit collusion are difficult to
document for actualmarkets but arewell-documented for artificialmarkets. For the
infinitely repeated Prisoners’ Dilemma, experimental evidence shows that subjects
may or may not cooperate and that cooperation can take time to occur; see, for
example, Dal Bó (2005) and references cited therein.
3 As Pareto-efficiency is a common equilibrium selection device, it is important to

emphasize that our selection of semi-separating equilibria is not guided by what is
collectively best for firms but rather by what best matches the class of phenomena
we are interested in understanding. While any delay in achieving collusive prices is
Pareto-inefficient, in fact delay is a real feature to actual and experimental markets,
and it is the objective of this research project to explore those dynamics.
4 For gasoline stations in Quebec, Clark and Houde (2011) find that a small price

premium (2 cents or more per liter) for a few hours can result in a significant
reduction in a station’s sales for the day (around 35%–50%).

always positive; at no point are beliefs sufficiently pessimistic that
collusive types give up trying to collude.While always positive, the
probability of collusion emerging in the current period (given it has
not yet occurred) converges to zero asymptotically. Furthermore,
even if both players are collusive types, the probability they never
achieve the collusive outcome can be positive. Though collusive
type players never give up trying to collude – in the sense that they
always choose the collusive price with positive probability – they
may never succeed in colluding. Hence, the waiting game faced by
firms may not just delay collusion but prevent it from emerging
altogether.

While there is a huge body of work on the theory of collusion,
none of it, to our knowledge, explores the emergence of collusion
through means that can reasonably be interpreted as tacit.5 Our
model does, however, share some features with the literature on
reputation in that it allows private information over a player’s
type and the space of types includes those which are committed
to a particular strategy.6 The seminal work of Kreps et al. (1982)
examines cooperation in a finitely repeated Prisoners’ Dilemma
where an ‘‘irrational’’ type might be endowed with tit-for-tat,
while a ‘‘rational’’ type optimizes unconstrained. Aumann and
Sorin (1989) considered cooperation in a common interests game
where a player might be endowed with a strategy with bounded
recall. More recently, reputation research has considered an
infinitely repeated game with commitment types with the typical
research objective being to narrow down the set of equilibrium
payoffs (compared to the usual Folk Theorem). When one player’s
type is private information, the issue is cast as whether equilibria
with low payoffs for that player can be eliminated; see, for
example, Cripps and Thomas (1997) and Cripps et al. (2005). More
recently, there has been research allowing both players to have
private information; see, for example, Atakan and Ekmekci (2008).
Also relevant is work on relational contracts where, in a different
setting and with a different mechanism than that modeled here,
players learn to cooperate more effectively (while in our setting,
they simply learn to cooperate); see Chassang (2010) and Halac
(2012).

Our model considers two-sided incomplete information in the
infinitely repeated settingwhen the commitment type ismyopic. It
differs in several respects from previous work on reputation. Prior
research for the infinitely repeated setting has not explored the
Prisoners’ Dilemma but rather other stage games including games
of common interests, conflicting interests,7 and strictly conflicting
interests.8 As a result, in those settings, a player wants to mimic
the commitment type, while in the PD setting, they (eventually)
want to separate from the commitment type.9 More importantly,
the central issue in the reputation literature is about characterizing
the set of equilibrium payoffs which, as noted above, is distinct
from our objective. The task before us is not to limit the set of
equilibria but rather to explore the dynamics of play for a particular
class of equilibria. In our setting, a player ultimatelywants to reveal
it is a cooperative type but would like to do so only after the
other player has done so. Thus, the issue is about the timing of
building a reputation and whether that tendency to wait prevents
cooperation from ever emerging. In this sense, our equilibrium
has some commonality to the war of attrition characterized in

5 Coordination within the context of a coordination game, rather than a game of
conflict, is explored in Crawford and Haller (1990).
6 For a review of some of the research on reputation, see Mailath and Samuelson

(2006).
7 The Stackelberg action for one player minimaxes the other player.
8 Player 1’s Stackelberg action along with player 2’s best reply produces the

highest stage game payoff for player 1 and the minimax payoff for player 2.
9 On this topic, also see Mailath and Samuelson (1998).
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Atakan and Ekmekci (2009) though they consider a different class
of stage games.10

Though for complete information, a related mathematical
structure to that explored here is Dixit and Shapiro (1985). They
consider a repeated Battle of the Sexes game which can be
interpreted as two players simultaneously decidingwhether or not
to enter amarket. It is profitable for one and only one firm to enter.
The stage game then has two asymmetric pure-strategy equilibria
and one symmetric mixed-strategy equilibrium. In the repeated
version, the dynamic equilibrium has randomization in each
period with, effectively, the game terminating once there is entry.
Farrell (1987) considers this structure when players can precede
their actions with messages. One can consider our equilibrium
as encompassing a waiting game for which the terminal payoff
(received after firms’ types are common knowledge) is either the
present value of the collusive payoff (when both are collusive
types) or the non-collusive payoff (when one or both are non-
collusive types).

After describing the model in Section 2, we define in Section 3
a class of perfect Bayesian equilibria possessing distinct learning
and collusion phases. Sections 4 and 5 consider equilibria forwhich
the learning phase is non-trivial and derives properties relating to
the likelihood of collusion emerging. In Section 6, additional results
are derived for some examples. Concluding remarks are provided
in Section 7, and all proofs are in Appendix.

2. Model

Consider a two-player Prisoners’ Dilemma:

Prisoners’ Dilemma
Player 2

Player 1
C D

C a, a c, b
D b, c d, d

where C is interpreted as the high collusive price, and D as the
low competitive price. Assume b > a > d ≥ c , and 2a ≥ b +

c ≥ a + d.11 2a ≥ b + c is standard as it means the highest
symmetric payoff has both players choosing C rather than taking
turns cheating (that is, one player choosingD and the other chooses
C).12 b+c ≥ a+d is new and is critical to our characterization. This
assumption can be re-arranged to b−a ≥ d− c , so that the gain to
playing Dwhen the other player is expected to play C is at least as
great as the gain to playing Dwhen the other player is expected to
play D. Let us show that this condition holds for both the Cournot
and Bertrand oligopoly games.

Consider the symmetric Cournot quantity game with constant
marginal cost c and inverse market demand for firm i of β0 −

β1qi − β2qj where β0 > 0, β1 ≥ β2 > 0; thus, products can be
differentiated. In mapping the Prisoners’ Dilemma to this setting,

10 In Atakan and Ekmekci (2009), the equilibrium is equivalent to awar of attrition
as each player seeks to hold out revealing it is not committed to its Stackelberg
action. In their setting, the player that concedes in the war of attrition increases
its current period payoff relative to not conceding, but ends up with a lower
future payoff than if its rival had conceded. In our setting, the player that concedes
decreases its current period payoff, relative to its rival conceding, but suffers no
disadvantage in terms of its future payoff from having conceded first. In our setting,
waiting occurs in order to avoid a short-run cost from conceding, while, in their
setting, waiting occurs to influence the future payoff.
11 It is typical to assume d > c but we allow d = c. Note that we cannot have
d = c and b + c = a + d holding simultaneously as it would then imply b = a,
which violates the assumption that b > a.
12 The condition 2a ≥ b+c is not necessary for our results but rather is tomotivate
the focus on players trying to sustain (C, C) in every period.

action C corresponds to some low quantity ql, and actionD to some
high quantity qh. b − a > d − c is then

qh

β0 − β1qh − β2ql − c


− ql


β0 − (β1 + β2) ql − c


> qh


β0 − (β1 + β2) qh − c


− ql


β0 − β1ql − β2qh − c


,

which holds if and only if qh > ql. The Bertrand price game with
homogeneous goods and constant marginal cost is, loosely speak-
ing, the special case when b = 2a, a > d = c = 0. If both set the
monopoly price then each earns a. Deviation from that outcome
involves just undercutting the rival’s price which means that the
price–costmargin is approximately the same but sales are doubled
so that the payoff is 2a. Given the other firm prices at cost, pricing
at cost as well yields a profit of zero (so, d = 0) as does pricing at
the monopoly price (so, c = 0).13

Players are infinitely-lived and anticipate interacting in a
Prisoners’ Dilemma each period. There is perfect monitoring so the
history of past actions is common knowledge. If players have a
commondiscount factor of δ, the grim trigger strategy is a subgame
perfect equilibrium if and only if:

δ >
b − a
b − d

. (1)

To capture uncertainty on the part of a player as to whether the
other player is willing to cooperate, it is assumed that a player’s
discount factor is private information. A player can be of two
possible types. A player can be type L (for ‘‘long run’’) whichmeans
its discount factor is δ where δ > b−a

b−d . Or a player can be type M
(for ‘‘myopic’’) whichmeans its discount factor is zero (though any
value less than b−a

b−d should suffice). Hence, type M players always
chooseD. A necessary condition for cooperative play to emerge and
persist over time is then that both players are type L.

3. A class of perfect Bayesian equilibria

There are potentially many equilibria to this game and we
will focus on what we believe is a natural class in which
there is a learning phase and a collusion phase.14 The learning
phase comprises those periods for which firms’ types are not
common knowledge and behavior depends only on beliefs over
types (that is, the strategy assigns the same action for all
histories that yield the same set of beliefs over types), while
the collusion phase consists of periods for which firms’ types
are common knowledge and behavior can depend on past play
in an unrestricted way. During the learning phase, players are
exclusively trying to learn about the other player’s type towards
initiating collusion. This interpretation is made appropriate by
focusing on strategies that depend only on beliefs as to the other
player’s type (as long as players’ types are private information) and
otherwise are independent of the history of play. When instead
bothplayers’ types are public information, firms enter the collusion
phase if they are both type L by adopting the grim trigger strategy
for the remainder of the horizon. At that point, behavior depends
on the history of play. Finally, there is the case when one player’s
type is revealed to be L and the other player’s type is still private
information.Wewill assume that both players (when they are type
L) adopt the grim trigger strategy. As one player has revealed his
type, the learning phase is over in which case it is natural that the
playerwhose type has been revealed adopts a grim trigger strategy

13 The reference to ‘‘loosely speaking’’ is that this interpretation requires three
prices – monopoly price, just below the monopoly price, and marginal cost – while
the Prisoners’ Dilemma has only two actions.
14 Strategies are described only when a player is type L because, when type M , a
player always chooses D.
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towards achieving collusion; and the other player’s best response,
if type L, will be to do the same.

To describe strategies during the learning phase, let αt denote
the probability that a player attaches to the other player being type
L in period t . For the symmetric equilibria thatwewill characterize,
αt is common to both players as long as both players’ types are
private information. Since only type L players choose action C then
if, on the equilibrium path, a player chooses C then the playermust
be type L. Hence, players’ types are private information only as
long as they have both chosen D. Given symmetric strategies (and
symmetric initial beliefs), players have common beliefs regarding
the other player’s type, and these beliefs are common knowledge.
Hence,αt is not only the probability that player 1 attaches to player
2 being type L but is also player 1’s point belief as to the probability
that player 2 attaches to player 1 being type L, and so forth.

The solution concept is a modification of Markov Perfect
Bayesian Equilibrium (MPBE), where a strategy is Markovian only
during the phase when players’ types are not common knowledge.
More specifically, if αt

∈ (0, 1) then a type L agent’s period t play
depends only on αt and no other element of the history; a Markov
strategy is then of the form, q (·) : [0, 1] → [0, 1]. As long as play-
ers’ types are private information, beliefs are updated as follows.
Suppose, in period t , αt

∈ (0, 1) and a type L player chooses C with
probability qt ∈ (0, 1). If a player was observed to choose D in pe-
riod t then the other player updates using Bayes Rule:

αt+1
=

αt

1 − qt


1 − αtqt

. (2)

Note that αt is monotonically decreasing and strictly so when qt ∈

(0, 1). Given that a typeM choosesD for sure and a type L choosesD
only with probability 1 − qt , the probability the other firm is type
L is declining with the length of time for which only D has been
chosen. α1 is the common prior probability. By the usual defini-
tion, the equilibrium is not aMPBE as firms engage in a grim trigger
strategy upon their types becoming common knowledge. To avoid
confusion, we will refer to the solution concept as Partial Markov
Perfect Bayesian Equilibrium (PMPBE).

The class of PMPBE can be partitioned according to q1, the
probability that a type L chooses C in the first period. Initially
consider a strategy profile in which q1 = 1; that is, a type L player
chooses C for sure. The strategy is then separating which means
that the learning phase is limited to the first period. If both players
choose C in period 1 then it is common knowledge both are type
L and they adopt the grim trigger strategy. If, say, player 1 chooses
D then player 2 assigns probability zero to player 1 being type L
in which case player 2 chooses D, whether of type L or M . Thus,
one or both choosing D in period 1 results in both choosing D in all
ensuing periods, in which case there is no collusion.

To verify this strategy profile is an equilibrium,weneed to show
that choosing C for sure in period 1 is optimal and, in response to
both choosing C in period 1, it is optimal for players to adopt the
grim trigger strategy. Regarding period 1, q1 = 1 is optimal if and
only if

α1


a
1 − δ


+

1 − α1 c +

δd
1 − δ


≥ α1b +


1 − α1 d +

δd
1 − δ

⇒ (3)

α1
≥

(1 − δ) (d − c)
(1 − δ) (d − c) + δ (a − d) − (1 − δ) (b − a)

(4)

where (4) follows from (3) assuming the denominator is positive.
(If the denominator is negative then (3) does not hold.) The
denominator is positive and the RHS of (4) is less than one if and

only if

δ (a − d) − (1 − δ) (b − a) > 0 ⇒ δ >
b − a
b − d

,

which we assumed in (1) to ensure that collusion is feasible under
complete information. Also note that if this condition is satisfied
then, in response to both choosing C in period 1, it is optimal to
adopt the grim trigger strategy for the remainder of the horizon.
In sum, if players are sufficiently patient (as specified in (1)) and
attach sufficient probability to the other player being type L (as
specified in (4)) then, when both players are type L, they will
choose action C in the first period and collusion will immediately
ensue. For this equilibrium, the learning phase is trivial.

Next consider a PMPBE in which q1 = 0 so that type L players
(aswell as typeM players) chooseD in the first period. Since, by (2),
α2

= α1 then, by theMarkovian assumption, q2 = 0. By induction,
qt = 0 for all t . This is a pooling equilibrium; it has no learning
phase and firms never collude.

Finally, consider a PMPBE in which q1 ∈ (0, 1) so that a type L
player assigns positive probability to both choosing C and D, so it
is a semi-separating equilibrium. In that it has already been spec-
ified what happens when one or both players choose C (a player
who chose C adopts the grim trigger strategy), let us explore the
various possibilities when all previous play involves D having been
chosen. There are three cases: (i) ∃T > 1 such that qt ∈ (0, 1) for
all t ∈ {1, . . . , T − 1} and qT = 1; (ii) ∃T > 1 such that qt ∈ (0, 1)
for all t ∈ {1, . . . , T − 1} and qT = 0; and (iii) qt ∈ (0, 1) for all t.

Case (i) has firms randomizing until period T at which time (if
both have always chosenD) they choose C for sure. Let us show that
such behavior cannot be part of a PMPBE. In period T−1 (assuming
both players chose D over periods 1, . . . , T − 2), a type L firm is
supposed to randomize in which case the payoffs from choosing C
and D must be equal. The payoffs are

Play C : α


q


a
1 − δ


+ (1 − q)


c +

δa
1 − δ


+ (1 − α)


c + δc +

δ2d
1 − δ


Play D : α


q

b +

δa
1 − δ


+ (1 − q)


d +

δa
1 − δ


+ (1 − α)


d + δc +

δ2d
1 − δ


and it is clear thatD yields a strictly higher payoff than C regardless
of q. The reasoning is simple and standard. The only way it can
be optimal to choose C is that it somehow positively influences a
player’s future payoff. However, when the other player is type L, a
playerwill receive a

1−δ
in the futurewhether C orD is chosen in the

current period; and if the other player is typeM , c+
δd
1−δ

is received
whether C or D is chosen. Thus, D is clearly preferred. There cannot
then be a PMPBE inwhich firms initially randomize and then adopt
C for sure.

Turning to case (ii), players initially randomize and then
(assuming it has been D all along) choose D for sure in period
T . By our Markovian assumption, it also means choosing D in all
ensuing periods. While such an equilibrium can be shown to exist
by construction, this case is not very interesting for our purposes.
One of our primary questions is determining whether players will
eventually cooperate. By construction, this equilibrium provides
a negative answer to that question by specifying that, after some
series of periods in which D is chosen, players give up trying to
collude and choose D for sure thereafter. What we cannot sort
out with such an equilibrium is whether giving up collusion is
arbitrary (each player chooses D for sure only because the other
player does so) or is necessary (it is not an equilibrium for players
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to continue to randomize). This issue can be explored with the
equilibria under case (iii).15

Case (iii) is when players randomize as long as D has always
been chosen (and thus they are uncertain as to players’ types). This
is the equilibrium that will draw our attention for the remainder
of the paper. It is worthy of analysis for several reasons. First, it
is useful to know whether such an equilibrium exists or instead
equilibria must be of the form in case (ii) which would imply
that beliefs must eventually become sufficiently pessimistic that
attempts at collusion stop. Second, if these equilibria do exist – so
players keep on trying to collude in the sense of choosing C with
positive probability – there is the question of whether it implies
that collusion will eventually occur for sure. Even if the probability
of choosing C declines over time, whether collusion is ensured
depends on the speed of that decline. Third, the primary focus of
the paper is on the learning phase, which makes this equilibrium
attractive because learning is not arbitrarily assumed to terminate
in some period (as with case (ii)). Instead, firms randomize as long
as it is optimal to do sowhich continues to provide the opportunity
to learn a rival’s type. Fourth, in contrast to the Pareto-efficient
separating equilibrium in which collusive types collude for sure
in the first period, this equilibrium is able to produce delay with
positive probability which means we can explore the dynamics
associatedwith the emergence of tacit collusion. Though firmsmay
prefer to enact collusion without delay, market and experimental
evidence show that they often do not. An equilibrium with delay
may then be able to deliver some insight regarding the emergence
of collusion.

4. Equilibrium properties

In this section we explore some properties of a Partial Markov
Perfect Bayesian Equilibrium. Recall that a PMPBE is partly de-
scribed by: ifαt

∈ (0, 1) then a type L agent’s period t play depends
only on αt and no other element of the history, so it is of the form,
q (·) : [0, 1] → [0, 1]. The particular class of PMPBE we will ex-
plore are defined by the following properties. In period 1, choose C
with probability q


α1


∈ (0, 1). In period t ≥ 2, if (D,D) in all pre-
vious periods then choose C with probability q


αt


∈ (0, 1); and
if (D,D) in periods 1, . . . , t − 2 and not (D,D) in period t − 1 then
choose C and adopt the grim trigger strategy. Recall that, as long as
both players chose D, αt evolves according to (2). Equilibrium con-
ditions are of three types. First, conditions to ensure randomization
is optimal when (D,D) has always been played. Second, given both
players chose D up to the preceding period and then one player
chose C and the other chose D in the preceding period, it is opti-
mal for the player who chose C to do so again in the current period
(it being the initial move for the grim trigger strategy). Third, in re-
sponse to the history just described, it is optimal for the playerwho
chose D to choose C (again, it being the initial move for the grim
trigger strategy). The last scenario just requires optimality of the
grim trigger strategy given the other player is type L and chooses
the grim trigger strategy, which is satisfied if and only if (1) holds.
The second case is distinct in that player 1 remains uncertain as to
the other player’s type. After dealingwith the first set of conditions,
we will examine the second condition.16

15 Case (ii) PMPBE can be shown to exist by construction using backward induction
from period T . In fact, the PMPBE that we focus our attention on is the case when
T = +∞ and is the limit of case (ii) PMPBE as T → +∞.
16 As shown by, for example, Bhaskar (1998) and Bhaskar et al. (2008), mixed
strategy equilibria for an infinitely repeated game need not be purifiable, which,
if that is the case, removes an important motivation for mixed strategy equilibria.
The loss of purification is due to the loss of local uniqueness of Nash equilibrium.
For example, Bhaskar (2000) derived a continuumofmixed strategy Nash equilibria

Before tackling these conditions, a comment is in order. In
deriving equilibrium conditions, a player will go through the
thought experiment of deviating from q (·). Note, however, that
this does not upset the specification of common beliefs. Suppose
player 1 deviates in period t by not choosing C with probability
q

αt

. As each player expects the other to have chosen C with

probability q

αt

, eachplayer assigns probability αt(1−q(αt))

1−αtq(αt)
to the

other player being type L. While player 1 knows that player 2’s
beliefs about player 1’s type are incorrect, that is irrelevant as
all player 1 cares about is player 2’s type and player 2’s beliefs,
both of which are summarized by αt(1−q(αt))

1−αtq(αt)
. Thus, αt(1−q(αt))

1−αtq(αt)
remains the relevant state variable, even if a player deviates from
equilibrium play.

Suppose both players’ types are private information, so either it
is period 1 or it is some future period but both players have thus
far only chosen D. A player’s expected payoff from choosing C is

W C (α) ≡ α


q


a
1 − δ


+ (1 − q)


c +

δa
1 − δ


+ (1 − α)


c + δc +

δ2d
1 − δ


.

With probability α, the other player is type L and chooses C with
probability qwhich results in cooperative payoff a being earned in
the current and future periods; and choosesDwith probability 1−q
so that payoff c is earned in the current period and the cooperative
payoff thereafter. Note that, regardless of the other player’s action,
if the other player is type L as well then both players adopt the
grim trigger strategy thereafter so a is earned in the future. With
probability 1−α, the other player is typeM so that player choosesD
which results in a payoff of c in the current and subsequent period
(as C is chosen in the next period as well on the hope that collusion
will have been initiated) and the non-collusive payoff d thereafter.
Simplifying this expression,

W C (α) = αq (a − c) + (1 + δ) c

+ δα


(a − d)
1 − δ

+ (d − c)


+
δ2d
1 − δ

. (5)

The expected payoff from choosing D is

WD(α)

≡ α


q

b +

δa
1 − δ


+ (1 − q)


d + δV


α (1 − q)
1 − αq


+ (1 − α)


d + δV


α (1 − q)
1 − αq


, (6)

where V : [0, 1] → ℜ is the PMPBE value function for a type L
player. (6) can be simplified to

WD(α) = αq

b +

δa
1 − δ


+ (1 − αq)


d + δV


α (1 − q)
1 − αq


. (7)

for a repeated game, none of which were the limit of pure strategy equilibria of
a perturbed game. This concern about purification could well provide a rationale
for our focus on PMPBE. With PMPBE, randomization only occurs when strategies
condition on players’ (common) belief over the other player’s type. While we have
not proven local uniqueness of such equilibria, it would be surprising if that was
not the case.
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If, in equilibrium, q ∈ (0, 1) then the expressions in (5) and (7)
must be the same:

αq (a − c) + (1 + δ) c + δα


(a − d)
1 − δ

+ (d − c)


+
δ2d
1 − δ

= αq

b +

δa
1 − δ


+ (1 − αq)


d + δV


α (1 − q)
1 − αq


.

Re-arranging gives us: (see Box I)
(8) will need to hold for type L firms to optimally randomize

when the history is composed only of having played D.
Next consider the situation in which, prior to the previous

period, (D,D) had always been played so that both players’ types
were private information, and, in the previous period, one player
chose C and the other chose D. If both are type L, they adopt the
grim trigger strategy. For the player who knows the other player’s
type (and thus knows he will choose C), choosing C is optimal if
and only if (1) holds. Now consider the player whose type has been
revealed and remains uncertain as to the other player’s type. If that
player assigns probability α to the other player being type L then
he prefers to choose C if and only if

α


a

1 − δ


+ (1 − α)


c +

δd
1 − δ


≥ α


b +

δd
1 − δ


+ (1 − α)


d

1 − δ


which is equivalent to17

α ≥
(1 − δ) (d − c)

(1 − δ) (d − c) + [δ (a − d) − (1 − δ) (b − a)]
≡ α∗. (9)

(9) will need to hold for type L firms to optimally adopt the grim
trigger strategy when one player chose C in the preceding period.

Theorem 1 states that there is a symmetric PMPBE in which,
as long as players’ types are private information, a type L player
randomizes between playing C and D when α > α, and chooses D
for sure when α ≤ α (where α is defined in Theorem 1). When a
player randomizes, C is chosenwith probability q (α), as defined in
(8). Proofs are in Appendix.

Theorem 1. There existsδ ∈ (0, 1) such that if δ > δ then there
is a symmetric Partial Markov Perfect Bayesian Equilibrium q (·) such
that

q (α)


= 0 if α ∈


0, α


∈ (0, 1) if α ∈


α, 1


V (α)


=

d
1 − δ

if α ∈

0, α


∈


d

1 − δ
,

a
1 − δ


if α ∈


α, 1


where

α ≡


1 − δ2


(d − c)

δ [(1 − δ) (a − c) + δ (a − d)]
∈ [0, 1) ,

and limα→1 q (α) < 1.

Let us briefly review the key elements of the proof of Theorem1.
As stated in Theorem 1, if α < α then firms choose D. To ensure
the optimality of that behavior, the highest value for α is found
such that a firm prefers D regardless of the value for q of the
other firm (with the binding case being q = 0). This condition

17 Note that δ (a − d) − (1 − δ) (b − a) > 0 as it is equivalent to δ > b−a
b−d , which

holds by assumption. Hence, α∗
∈ (0, 1) .

delivers α. Theorem 1 also states that, when α > α, a firm is
content to randomize between C and D given the history is
composed of firms having only chosen D. It is shown that if α >
α then, if its rival chooses D for sure (q = 0), a firm strictly
prefers C (q = 1) because there will be no chance of cooperation
otherwise; thus, q = 0 is not part of a symmetric equilibrium. If its
rival chooses C for sure (q = 1), a firm strictly prefers D (q = 0)
because it does not need to choose C in order for cooperation
to emerge; thus, q = 1 is not part of a symmetric equilibrium
either. From these results and the continuity of payoffs, it follows
that there is a value of q ∈ (0, 1) such that the expected payoffs
from C and D are equalized. Finally, recall that when a player has
randomized and chosen C when the other firm simultaneously
chose D, the player that chose C needs to find it optimal to choose
C in the next period for sure. It was previously derived in (9) that
the prescribed behavior of following C with C is optimal if and only
if α ≥ α∗. It is shown in the proof that if δ is sufficiently close to
one then α ≥ α∗ which ensures that a firm that takes the initiative
by first choosing C (which implies α > α) will optimally choose C
again on the hope that its rival will reciprocate by choosing C .

The next result concerns the evolution of beliefs and behavior
in response to a failure to cooperate, by which we mean both
players have thus far always chosenD. Recall that if a player assigns
probability α to the other player being type L then, after observing
the other player choose D, the updated probability is α(1−q(α))

1−αq(α)

where q (α) is the equilibrium probability that a type L player
chooses C given beliefs α. Further recall, from Theorem 1, that if
α > α then q (α) > 0.

Theorem 2. If q (·) is a symmetric Partial Markov Perfect Bayesian
Equilibrium as described in Theorem 1 then: (i) if α1 > α then αt >
αt+1 and q


αt


> 0 for all t and limt→∞ αt
= α; (ii) if α > 0 then

limα↓α q (α) = 0; and (iii) limt→∞ αtq

αt


= 0.

Recall that α has the property that if αt < α then choosing D
is optimal because the likelihood that its rival is type L – and has
the capacity to collude – is sufficiently low. Hence, if α1 < α then
type L firms will choose D in the first period (and, by stationarity,
thereafter) and collusion never has a chance to emerge. However,
if instead α1 > α then, by Theorem 2, αt > α for all t which then
implies q


αt


> 0 for all t. Therefore, no matter how long play-
ers have failed to cooperate, a type L player will continue to try
to initiate cooperation (in the sense of assigning positive probabil-
ity of choosing C). In other words, beliefs never become so pes-
simistic about the other player’s willingness to cooperate that a
player prefers to abandon any prospects of cooperation by play-
ing D for sure. When α > 0, it is also the case that the probability
of a player initiating cooperation converges to zero over time in re-
sponse to the probability that the other player is type L converging
to α after a history of failed cooperation. Note that the probability
of a type L player playing C must converge to zero as the proba-
bility of a player being type L approaches α (> 0) from above. If
q (α) was instead bounded above zero then a sufficiently long se-
quence of playing D would have to result in a sufficiently small
probability of the player being type L, which would contradict this
probability being bounded below by α (at least when α > 0).
Finally, conditional on cooperation not yet having emerged, the
probability assigned to a player initiating cooperation isαtq


αt

in

which case the probability that cooperation emerges out of period
t is 1 −


1 − αtq


αt
2. While this value is always positive – so

collusion is always a possibility – it converges to zero in response
to an ever-increasing sequence of failed attempts at collusion, in
which case collusion eventually becomes very unlikely to emerge.
Whether collusion emerges for sure is explored for the class of
PMPBE examined in the next section.
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αq =

δ


a
1−δ

− V


α(1−q)
1−αq


− (1 − α)

δ(a−d)
1−δ

− [1 + δ (1 − α)] (d − c)

δ


a
1−δ

− V


α(1−q)
1−αq


+ (b − a) − (d − c)

. (8)

Box I.

5. Affine equilibria

For the class of PMPBE described in Theorem 1, let us examine
those for which the value function is affine in α (when players’
types are private information). The appeal to affine PMPBE is their
tractability in that they have closed-form solutions, which will
allow additional properties to be derived about the dynamics.
In particular, the question of whether collusion is delayed but
inevitable can be addressed.

Definition 3. An affine Partial Markov Perfect Bayesian Equilib-
rium is a PMPBE (as described in Theorem 1) in which the value
function is affine in α for α ∈


α, 1


.

Theorem 4. There existsδ ∈ (0, 1) such that if δ > δ then there
exists a unique affine PartialMarkov Perfect Bayesian Equilibrium. The
value function is

V (α) =


d

1 − δ
if α ∈


0, α


x + yα if α ∈


α, 1

 (10)

where (x, y) is the unique solution to:

x + y


1 − δ2


(d − c)

δ [(1 − δ) (a − c) + δ (a − d)]
=

d
1 − δ

(11)

x + y =

2aδ + (1 − δ)

(b − a) − (d − c) −

√
Ω


2δ (1 − δ)

(12)

and

Ω ≡ [(b − a) − (d − c)]2 + 4δ (a − c) (b − a) . (13)

Furthermore, if α ∈

α, 1


then

q (α)

=
δ (a − d) + δ (1 − δ) (d − c − y)

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)

+


1
α



×


δa − δ (1 − δ) x − δ (a − d) −


1 − δ2


(d − c)

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)


. (14)

In the preceding section,we established thatαtq

αt

converges

to zero and thus is eventually decreasing over time. For affine
PMPBE, we can now say that αtq


αt

is monotonically declining

over time, in which case the probability a player chooses C
decreases with the length of time for which cooperative play has
not yet occurred.

Theorem 5. If q (·) is defined by (14) then αq (α) is increasing in α
and V (α) is increasing in α.

Whileαq (α) is increasing inα, q (α) need not be increasing inα
everywhere, thoughwe know that eventually itmust be increasing
in α since it converges to zero (when α > 0). We next show that
when d > c then q (α) is decreasing over time as lower probability
is attached to players being type L (given only D has been

chosen thus far). However, when d = c then q (α) is, interestingly,
independent of a player’s beliefs as to the other player’s type and
thus is constant over time. Though it is still the case that αt is
declining, a type L player maintains the same probability of acting
cooperatively.

Theorem 6. If q (·) is defined by (14) then, for α > α: (i) if d > c
then q (α) is increasing in α; and (ii) if d = c then q (α) = q′ for
some q′

∈ (0, 1) .

When d = c – so a player is not harmed when choosing the
cooperative action – the probability that a type L player chooses
C is fixed at some positive value. Thus, if both players are type L
then, almost surely, players will eventually achieve the collusive
outcome. However, whether cooperative play ultimately emerges
when d > c is not so clear, as the probability of cooperation being
initiated converges to zero. To examine this issue, define Q T as the
probability that players are still not colluding by the end of period
T , conditional on both players being type L. Q T is defined by

Q T
=

T
t=1


1 − qt

2
where, given α1, qt is defined recursively by:

qt = q

αt , t ≥ 1; αt

=
αt−1


1 − qt−1


1 − αt−1qt−1

, t ≥ 2.

The next result shows that, even when both players are type L,
there is a positive probability that collusion never emerges even
though they never give up trying (that is, they always choose C
with positive probability).18

Theorem 7. If q (α) is defined by (14) and d > c then limT→∞ Q T

> 0.

If both players are type L then, in any period, there is always a
positive probability that one of them will choose the cooperative
action and thereby result in the emergence of collusion. It must
then be true that a long sequence of choosing D is not a sufficiently
pessimistic signal (that the other player is type L)which can only be
the case if, as αt

→ α, the probability that a type L player chooses
C converges sufficiently fast to zero. But, as shown in the previous
result, this also has the implication that the probability that two
type L players start colluding in period t is going to zero sufficiently
fast, which means collusion is not assured. If both players are
willing and able to cooperate, there is a positive probability that
they never do so though they never give up trying.

6. Examples

6.1. Example 1: Bertrand price game

Assume b = 2a, d = c = 0, and normalize so a = 1. This
case approximates the Bertrand price game in which, for example,
market demand is perfectly inelastic at two units with amaximum
willingness to pay of 1, and firms have zero marginal cost.

18 Theorem 7 is true as long as q (α) = A + B
 1

α


for some A and B where B < 0

and A + B < 1.
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A firm’s equilibrium strategy during the learning phase is19

q (α) =
√

4δ + 1 − 1
√

4δ + 1 + 1

. As one would expect,

the probability of choosing C is higher when players are more
patient.

6.2. Example 2: Bertrand price game with relative compensation

Let us modify the Bertrand price game so that managers – not
owners – are repeatedly making price decisions and managerial
compensation is based on relative performance. Specifically, a
manager receives compensation equal to half of firm profit but, in
the event that the other firm has higher profit, incurs a penalty
equal to one-quarter of the rival firm’s profit. The single-period
payoff to a manager is then:
Payoff of manager i in period t

=


(1/2) π t

i if π t
i ≥ π t

j
(1/2) π t

i − (1/4) π t
j if π t

i < π t
j

where π t
i is the period t profit of firm i. If market demand is

perfectly inelastic at two units with amaximumwillingness to pay
of 2 (and zero marginal cost) then the managers’ payoff matrix is
represented by: a = 1, b = 2, c = −1, d = 0. Equilibrium has:

q (α)

=


0 if α ∈


0,

1 − δ2

2δ − δ2



αδ (2 − δ) −


1 − δ2

 √
2δ − 1


α
√
2δ (2δ − 1)

if α ∈


1 − δ2

2δ − δ2
, 1


.

If δ = .8 then α = .375 and, for α > .375, q (α) ≃ .335 −
.126
α

. If players have thus far always played D then, in each player
updating their beliefs as to the other player’s type, αt will fall over
time which then induces type L players to choose C with a lower
probability. Assuming each firm initially assigns a 50% chance to
its rival being type L, there is a 36% chance that collusion is never
achieved.

6.3. Example 3: Asymmetric Bertrand price game

Consider the following generalization of Example 1 where
the collusive outcome is now allowed to be asymmetric and γ ∈

[1/2, 1).20

Asymmetric Bertrand Price Game
Player 2

Player 1
Cooperate Defect

Cooperate γ , 1 − γ 0, 1
Defect 1, 0 0, 0

The collusive outcome gives player 1 a market share of γ which is
at least 1/2. There is an affine PMPBE with

q1 =

√
γ (γ + 4δ(1 − γ )) − γ

√
γ (γ + 4δ(1 − γ )) + γ

,

q2 =

√
(1 − γ )(1 − γ + 4δγ ) − (1 − γ )

√
(1 − γ )(1 − γ + 4δγ ) + (1 − γ )

.

One can prove that q1 is decreasing in γ and increasing in δ, and q2
is increasing in γ and δ.

It might be expected that the player with the higher share of
collusive profit would play C with a higher probability. However,

19 Derivations for all examples are available on request.
20 A preliminary analysis suggests that many of the results in Sections 3 and 4 can
be extended to when the Prisoners’ Dilemma is asymmetric.

when the share of collusive profit for player 1 (γ ) is larger, the
probability of playing C is actually higher for player 2 and lower for
player 1. Since player 1 gains more by achieving cooperative play
when γ is bigger, player 2 must be more likely to play C if player
1 is to be indifferent between playing C and D; and recall that D
is more attractive when the other player is more likely to initiate
cooperation. The player who benefits more from colluding is then
less likely to take the first move in cooperating.

To explore the effect of asymmetry on the likelihood of
collusion, consider the probability that collusion is initiated in any
period:

1 − (1 − q1) (1 − q2)

= 1 −
4

γ+4δ(1−γ )

γ
+ 1

 
1−γ+4δγ

1−γ
+ 1

 .

It is straightforward to show that it is increasing in γ , so collusion
is more likely when the collusive outcome is more skewed to favor
one firm.

As the equilibrium condition for the grim trigger strategy is
δ ≥ γ , increasing asymmetry by raising γ makes collusion more
difficult in the sense that the minimum discount factor is higher.
However, conditional on the collusive outcome being sustainable,
asymmetry reduces the expected time until collusion is achieved.
In fact, as asymmetry becomes extreme, collusion is achieved
immediately. Since limγ→1 q1 (α1) = 0 and limγ→1 q2 (α2) = 1
then limγ→1 1 − (1 − q1) (1 − q2) = 1.21

7. Concluding remarks

In practice, communication – either express or implicit – is
essential to collusion. This we know from both experimental work
and the many documented episodes of cartels. Communication
can manifest itself in two ways: exchange of information and
exchange of intentions. There is a limited amount of work in
oligopoly theory on collusion and the exchange of information. In
Athey and Bagwell (2001, 2008), firms have private information
about their cost and exchange (costless) messages about cost,
while in Hanazono and Yang (2007) and Gerlach (2009), firms have
private signals on demand and seek to share that information.
Then there is work in which sales or some other endogenous
variable is private information and firms exchange messages
for monitoring purposes; see Aoyagi (2002), Chan and Zhang
(2009), and Harrington and Skrzypacz (2011).22 Communication
may also be used to resolve strategic uncertainty; specifically, in
order to coordinate a move from a non-collusive to a collusive
equilibrium. Here, intentions rather than hard information is being
communicated.

Within the context of the equilibrium paradigm, the current
paper sought to make progress on the tacit signaling of the
intention to collude. In a sense, signaling in our model is
part information (regarding a player’s type) and part intentions
(regarding cooperative play). Let us summarize our main findings.
If the initial probability that players are capable of colluding is
sufficiently high then, in any period, there is always the prospect of
collusion emerging; no matter how long is there a history of failed
collusion, beliefs as to players being cooperative types remain
sufficiently high that it is worthwhile for them to continue to try to

21 Keep in mind that as we let γ → 1, we must have δ → 1 so that δ ≥ γ is
satisfied.
22 There is also an extensive game theory literature on the issue of private
monitoring. See Compte (1998), Kandori and Matsushima (1998), Kandori (2002),
Zheng (2008), and Obara (2009).
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cooperate. This does not imply, however, that collusion is assured.
For a wide class of situations, there is a positive probability that
collusion never emerges. Players never give up trying to collude
but they may also never succeed.

In terms of future work, one research direction is to allow
a player’s type to change over time, rather than remain fixed
forever.23 When a cooperative type raises price and does not
receive a favorable response, it will infer that its rival is an
uncooperative type. In that case, it might be inclined to try again
later on the hope that the rival’s type has changed. But it may also
be the case that a player who has previously failed to respond
in kind to an invitation to collude will see itself as having the
onus to initiate cooperation (in the event that its type changes)
because its rival believes it is an uncooperative type. Now suppose
players are currently engaged in cooperative play. A deviation
by a player is part of equilibrium play and signals a change
in a player’s type to being uncooperative. Assuming persistence
in types, the punishment of the deviator would have a certain
credibility (beyond simply being an equilibrium) in that the other
player believes there is little point in trying to cooperate. Indeed,
non-cooperation may be the unique equilibrium. All this could put
the burden on the deviator to re-initiate cooperation. Even this
cursory analysis suggests that a rich set of behavior could arise
from allowing types to evolve stochastically over time.

Appendix. Proofs

Proof of Theorem 1. To start, let us show that α ∈ [0, 1). α ≥ 0
follows from d ≥ c and a > d. α < 1 if and only if

δ [(1 − δ) (a − c) + δ (a − d)] >

1 − δ2 (d − c)

⇔ δ >
d − c
a − c

.

Given (1) holds, a sufficient condition for δ > d−c
a−c is

b − a
b − d

≥
d − c
a − c

⇒ (b − a) (a − c)

≥ (d − c) (b − d) ⇒ b + c ≥ a + d

which is true by assumption.
We need (9) to hold when firms are randomizing, which means

when α > α. That is the case if α ≥ α∗ which, after some
manipulation, is equivalent to:

1 + δ

δ [(1 − δ) (a − c) + δ (a − d)]

≥
1

δ (a − d) − (1 − δ) [(b − a) − (d − c)]
. (15)

(15) holds as δ → 1. Thus, as long as δ is sufficiently close to
one (which is a condition of Theorem 1) then as soon as one
player chooses C , both playerswill optimally adopt the grim trigger
strategy when they are type L.

Now let us move on to establishing stated properties on q (·). A
player strictly prefers D to C if and only if:

αq

b +

δa
1 − δ


+ (1 − αq)


d + δV


α (1 − q)
1 − αq


> αq


a

1 − δ


+ α (1 − q)


c +

δa
1 − δ


+ (1 − α)


c + δc +

δ2d
1 − δ


. (16)

23 Recent work by Escobar and Toikka (2009) provides a foundation for such an
analysis.

Note that V (α) has a lower bound of d
1−δ

– as a player can assure
itself of a payoff of at least d

1−δ
by always choosing D – which then

implies V


α(1−q)
1−αq


≥

d
1−δ

. Substituting d
1−δ

for V


α(1−q)
1−αq


and re-

arranging, a sufficient condition for (16) is

αq

b +

δa
1 − δ


+ (1 − αq)


d

1 − δ


− αq


a

1 − δ


− α (1 − q)


c +

δa
1 − δ


− (1 − α)


c + δc +

δ2d
1 − δ


> 0. (17)

Take the derivative of the LHS of (17) with respect to q:

α


b +

δa
1 − δ


− α


d

1 − δ


− α


a

1 − δ


+ α


c +

δa
1 − δ


= α [(b − a) − (d − c)] + αδ


a − d
1 − δ


> 0, (18)

since b − a ≥ d − c and a − d > 0. Hence, the difference between
the payoff to D and the payoff to C is minimized when q = 0. Thus,
D is surely strictly preferred to C if (17) holds when q = 0:

d
1 − δ

> α


c +

δa
1 − δ


+ (1 − α)


c + δc +

δ2d
1 − δ


⇒ α <

(1 + δ) (d − c)

δ

a − c +

δ(a−d)
1−δ


=


1 − δ2


(d − c)

δ [(1 − δ) (a − c) + δ (a − d)]


≡ α


. (19)

Thus, if α < α then, in equilibrium, q (α) = 0.
To prove that q


α


= 0, suppose not. It follows from q

α


> 0

that α(1−q(α))
1−αq(α)

< α. The preceding analysis showed q (α) = 0 ∀α

< α and, since q = 0 implies α(1−q)
1−αq = α, then by stationary qt =

0 ∀t ≥ t ′ when αt ′ < α. Hence,

V


α

1 − q


α


1 − αq

α
  =

d
1 − δ

. (20)

For q

α


> 0, the expected payoff from choosing C must be at least
as great as that from choosing D:

αq


a
1 − δ


+ α (1 − q)


c +

δa
1 − δ


+ (1 − α)


c + δc +

δ2d
1 − δ


≥ αq


b +

δa
1 − δ


+ (1 − αq)


d

1 − δ


, (21)

wherewe used (20). However, note that the expressions in (21) are
the same as those in (17). By our previous analysis, if α = α then
(17) holds with equality when q = 0 and with strict inequality
when q > 0. We conclude that (21) and q


α


> 0 are inconsistent
and, therefore, q


α


= 0.
Next let us show: if α > α and q (α) is part of a PMPBE then

q (α) ∈ (0, 1). To prove q (α) > 0, suppose not so ∃α′ > α such
that q


α′


= 0. By the preceding logic, V

α′


=
d

1−δ
. In that case,

the payoff to D is at least as great as that from C if and only if (19)
holds with a weak inequality which the previous analysis showed
that is the case if and only if α ≤ α. Therefore, if α > α then
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q (α) > 0. To show that q (α) < 1, suppose q (α) = 1. The payoffs
from C and D are:

Play C : α


a

1 − δ


+ (1 − α)


c + δc +

δ2d
1 − δ


Play D : α


b +

δa
1 − δ


+ (1 − α)


d +

δd
1 − δ


.

Since choosing D yields a strictly higher payoff ∀α ∈ (0, 1], it
follows that q (α)must be bounded below 1∀α ∈ [0, 1]. Therefore,
q (α) < 1 ∀α ∈ (0, 1] and, furthermore, limα→1 q (α) < 1. Finally,
Theorem4proves by construction that there exists q (·) :


α, 1


→

(0, 1) for which the expected payoffs from C and D are equalized
and thus is part of a PMPBE.

To complete the proof, let us show the properties on V (·)
are true, given the properties on q (·) hold. First note that, in
equilibrium, V : [0, 1] →

 d
1−δ

, a
1−δ


, as V (α) has a lower bound

of d
1−δ

and a
1−δ

is an upper bound because the highest average
symmetric payoff is a. If q (α) = 0 then type L players play D for
sure in the current period and since α(1−q(α))

1−αq = α then the same is
true for all ensuing periods; hence, by stationarity, if q (α) = 0 then
V (α) =

d
1−δ

. To show that V (α) ∈
 d
1−δ

, a
1−δ


when α ∈


α, 1


,

note that q (α) ∈ (0, 1) implies V (α) = W C (α) = WD(α) ·
d

1−δ
is a lower bound on V (α) for all α since at least that value can
be achieved by choosing D in every period. Using the payoff from
choosing D, we have:

V (α) = αq

b +

δa
1 − δ


+ (1 − αq)


d + δV


α (1 − q)
1 − αq


≥ αq


b +

δa
1 − δ


+ (1 − αq)


d + δ

d
1 − δ


>

d
1 − δ

+ αq

a − d
1 − δ


>

d
1 − δ

since b > a > d. Using the payoff from choosing C , we have:

V (α) = αq


a
1 − δ


+ α (1 − q)


c +

δa
1 − δ


+ (1 − α)


c + δc +

δ2d
1 − δ


=

a
1 − δ

− α (1 − q) (a − c)

− (1 − α)


a

1 − δ
− c − δc −

δ2d
1 − δ


<

a
1 − δ

,

since a > c, d. This establishes the properties on V (·). �
Proof of Theorem 2. As a preliminary result, let us first show: if
α1 > α then α is a lower bound of the sequence


αt

. To do so,

we will show: if α > α then α(1−q(α))

1−αq(α)
> α; recall that αt+1

=

αt(1−q(αt))
1−αtq(αt)

. Suppose not so that ∃α′ > α such that α′(1−q(α′))
1−α′q(α′)

≤ α.

By the proof of Theorem1, V


α′(1−q(α′))
1−α′q(α′)


=

d
1−δ

and, from (8), we
have:

α′q

α′


=
δ
 a−d
1−δ


−

1 + δ


1 − α′


(d − c) −


1 − α′


δ(a−d)
1−δ

δ
 a−d
1−δ


+ (b − a) − (d − c)

. (22)

Wehavemade the suppositionα ≥
α′(1−q(α′))
1−α′q∗(α′)

which is equivalent
to

α′q

α′


≥
α′

− α

1 − α
. (23)

Substituting (22) into (23),

α′δ (a − d) − (1 − δ) (d − c) − δ (1 − δ) (1 − α) (d − c)
δ (a − d) + (1 − δ) [(b − a) − (d − c)]

≥
αδ (1 − δ) (a − c) + αδ2 (a − d) −


1 − δ2


(d − c)

δ [(1 − δ) (a − c) + δ (a − d)] −

1 − δ2


(d − c)

.

As the numerators are equal and positive (since they equal α′
−α)

then the inequality holds if and only if

δ [(1 − δ) (a − c) + δ (a − d)] −

1 − δ2 (d − c)

≥ δ (a − d) + (1 − δ) [(b − a) − (d − c)]
⇒ 0 ≥ (1 − δ) (b − a)

which is not true. Hence, @α′ > α such that α′(1−q(α′))
1−α′q(α′)

≤ α; there-

fore, if α′ > α then α′(1−q(α′))
1−α′q(α′)

> α.

Given thatα1 > α impliesαt > α ∀t , it follows fromTheorem1
that q


αt


> 0 ∀t which further implies

αt

is strictly decreas-

ing. To complete the proof of part (i) of this theorem, it needs to be
shown: if α1 > α then limt→∞ αt

= α. By Bayes rule,

αt+1
= αt


1 − qt

1 − αtqt


⇒ αt+1

≤ αt .

Since it has already been shown that α is a lower bound of the se-
quence {αt

}, {αt
} has a limit and it is sufficient to show that α is

the infimum of {αt
}. Suppose not, and let α′ > α be the infimum

of {αt
}. Hence, as αt

→ α′ then αt+1
→ αt , which means qt → 0,

and qt → 0 implies V (αt+1) →
d

1−δ
. But we know from the proof

of Theorem 1 that the payoff to D is the same as the payoff from
C if and only if αt

→ α, which contradicts αt
→ α′ and α′ > α.

Therefore, limt→∞ αt
= α, for α1 > α.

Next let us show part (ii): limα↓α q (α) = 0 when α > 0. As it
has already been proven that α1 > α implies limt→∞ αt

= α, it
follows that

lim
α↓α

α (1 − q (α))

1 − αq (α)
= α (> 0) ,

which implies limα↓α q (α) = 0.
Finally, it is easy to prove part (iii): limt→∞ αtq


αt


= 0. If
α1

≤ α then q

αt


= 0 ∀t and therefore limt→∞ αtq

αt


= 0. If
α1 > α > 0 then, by the other results of Theorem 2, limt→∞ αt

=

α and limα↓α q (α) = 0 which implies limt→∞ αtq

αt


=

0. If α1 > α = 0 then limt→∞ αt
= 0 which implies

limt→∞ αtq

αt


= 0. �

Proof of Theorem 4. First note that, by the same argument in the
proof of Theorem 1, if δ is sufficiently high then α ≥ α∗.

Re-arranging (8), an equilibrium q (·) is defined by

αq [(b − a) − (d − c)] + (1 − α)
δ (a − d)
1 − δ

+ (d − c) + δ (1 − α) (d − c)

= δ (1 − αq)


a
1 − δ

− V


α (1 − q)
1 − αq


(24)

Conjecturing that the value function is linear in α,

V (α) = x + yα, (25)

substitute (25) into (24).

αq [(b − a) − (d − c)] + (1 − α)
δ (a − d)
1 − δ

+ (d − c) + δ (1 − α) (d − c)
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= δ (1 − αq)


a
1 − δ

− x − y


α (1 − q)
1 − αq


⇒ (26)

αq

= α


δ (a − d) + δ (1 − δ) (d − c − y)

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)


+

δa − δ (1 − δ) x − δ (a − d) −

1 − δ2


(d − c)

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)
. (27)

Thus, αq is affine in α if the value function is affine in α. As a player
is indifferent between playing C and D, the value can be given by
the payoff to choosing C for sure:

V (α) = αq (a − c) +
αδ (a − d)

1 − δ
+ c

+
δd

1 − δ
− δ (1 − α) (d − c) .

The value function is affine in αq and, since αq is affine in α, V (α)
is affine in α.

The next step is to show that there exist unique values for x and
y. Using the payoff to playing C , in equilibrium the value function
equals:

V (α)

= αq (a − c) + c +
αδ (a − d)

1 − δ
+

δd
1 − δ

− δ (1 − α) (d − c)

= α


δ (a − c) [(a − d) + (1 − δ) (d − c − y)]

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)

+
δ (a − d)
1 − δ

+ δ (d − c)


+ (a − c)


δa − δ (1 − δ) x − δ (a − d) −


1 − δ2


(d − c)

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)



+ c +
δd

1 − δ
− δ (d − c) . (28)

Equating coefficients between (25) and (28), we have

x = (a − c)

×


δa − δ (1 − δ) x − δ (a − d) −


1 − δ2


(d − c)

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)



+ c +
δd

1 − δ
− δ (d − c) (29)

y =
δ (a − c) [(a − d) + (1 − δ) (d − c − y)]

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)

+
δ (a − d)
1 − δ

+ δ (d − c) . (30)

To show that there is a unique solution to (29)–(30), define
z ≡ x + y and note that:

z = x + y = V (1) = W C (1)

= Q (a − c) +
δ (a − d)
1 − δ

+ c +
δd

1 − δ
,

where Q = q(1). Simplifying the preceding equation gives:

z = Q (a − c) +
δa

1 − δ
+ c. (31)

If we can show that there exists a unique Q ∈ (0, 1) satisfying the
equilibrium condition (26) when α = 1, then z = x + y = V (1) is
unique.

Evaluating (26) at α = 1, we have:

Q [(b − a) − (d − c)] + (d − c)

= δ (1 − Q )


a

1 − δ
− x − y


1 − Q
1 − Q


⇒ δ (a − c)Q 2

− [2δ (a − c) + (b − a) − (d − c)]Q
+ [δ (a − c) − (d − c)] = 0.

This quadratic has two solutions:

Q =
2δ (a − c) + (b − a) − (d − c) ±

√
Ω

2δ (a − c)
,

where

Ω ≡ [2δ (a − c) + (b − a) − (d − c)]2

− 4δ (a − c) [δ (a − c) − (d − c)]

= [(b − a) − (d − c)]2 + 4δ (a − c) (b − a) > 0 (32)

since b > a > c . Hence, the two solutions are real. Next note that
the bigger root exceeds one:

Q b
= 1 +

(b − a) − (d − c) +
√

Ω

2δ (a − c)
> 1.

Thus, we only need to show that the smaller root falls in (0, 1).

Q s
= 1 +

(b − a) − (d − c) −
√

Ω

2δ (a − c)
< 1

if and only if

(b − a) − (d − c) <
√

Ω ⇔ [(b − a) − (d − c)]2 < Ω ⇔

[(b − a) − (d − c)]2 < [(b − a) − (d − c)]2 + 4δ (a − c) (b − a)
⇔ 0 < 4δ (a − c) (b − a) ,

therefore, Q s < 1. Q s > 0 if and only if

[2δ (a − c) + (b − a) − (d − c)]2 > Ω.

From (32), the preceding condition is equivalent to

4δ (a − c) [δ (a − c) − (d − c)] > 0,

which holds since δ > d−c
a−c . The last property follows from δ >

b−a
b−d ≥

d−c
a−c .

There then exists a unique Q ∈ (0, 1), and z = x + y = V (1) is
unique since it is linear in Q . In addition, plugging Q s in (31) gives

z =
2δ (a − c) + (b − a) − (d − c) −

√
Ω

2δ
+

δa
1 − δ

+ c

=

2aδ + (1 − δ)

(b − a) − (d − c) −

√
Ω


2δ (1 − δ)

.

To close themodel, use the initial condition V

α


=
d

1−δ
, which

takes the form:

x =
d

1 − δ
− y


1 − δ2


(d − c)

δ [(1 − δ) (a − c) + δ (a − d)]
.

x∗ is then the unique solution to

x∗
=

d
1 − δ

−

z − x∗

 
1 − δ2


(d − c)

δ [(1 − δ) (a − c) + δ (a − d)]
,

and y∗ is the unique solution to: y∗
= z − x∗. This completes the

proof that there is a unique affine PMPBE. Finally, solving for q from
(27) gives us (14).

This construction of an equilibrium q (·) was the basis for the
existence statement in Theorem 1. As that statement also had
q (α) ∈ (0, 1) if α ∈


α, 1


then we need (14) to satisfy that

condition as well. Given that q is increasing in α (see Theorem 6),
it need only be shown that q


α


= 0 and q (1) < 1. Those two
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properties are straightforward to establish by substituting α and 1,
respectively, into (14). �

Proof of Theorem 5. Since the equilibrium probability of choos-
ing C is

αq (α) = α


δ (a − d) + δ (1 − δ) (d − c − y)

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)


+


δa − δ (1 − δ) x − δ (a − d) −


1 − δ2


(d − c)

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)


then αq (α) is increasing in α if and only if

δ (a − d) + δ (1 − δ) (d − c − y)
(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)

> 0. (33)

By assumption (b − a) − (d − c) ≥ 0, and V (1) < a
1−δ

implies

a
1 − δ

− (x + y) > 0. (34)

Thus, (33) is true if and only if the numerator is positive:

(a − d)
1 − δ

+ (d − c) > y. (35)

Suppose (35) was not true. From (30), we have

y =
δ (a − c) [(a − d) + (1 − δ) (d − c − y)]

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)

+
δ (a − d)
1 − δ

+ δ (d − c) . (36)

If (35) is not true then the first termof (36) is non-positive, but then
(36) implies

y ≤ δ


(a − d)
1 − δ

+ (d − c)


<
(a − d)
1 − δ

+ (d − c)

which contradicts the supposition that (35) is not true. From this
contradiction, we conclude (35) and thus αq (α) is increasing in α.

To show that V (α) is increasing in α, recall that

V (α) = αq (α) (a − c) +
αδ (a − d)

1 − δ
+ c

+
δd

1 − δ
− δ (1 − α) (d − c) .

That αq (α) is increasing in α delivers the result. �

Proof of Theorem 6. For α ≤ α, q (α) = 0, so it is non-decreasing
in α for α ∈


0, α


. From here on, suppose α > α so that

q (α) =
δ (a − d) + δ (1 − δ) (d − c − y)

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)

+


1
α


δa − δ (1 − δ) x − δ (a − d) −


1 − δ2


(d − c)

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)


.

Thus, q (α) is increasing in α if and only if
δa − δ (1 − δ) x − δ (a − d) −


1 − δ2


(d − c)

(1 − δ) [(b − a) − (d − c)] + δa − δ (1 − δ) (x + y)


< 0. (37)

The denominator of the LHS of (37) is positive because b−a ≥ d−c
by assumption and a

1−δ
> x+ y as shown in (34). Thus, (37) is true

if and only if the numerator is negative:

δa − δ (1 − δ) x − δ (a − d) −

1 − δ2 (d − c) < 0. (38)

Suppose (38) was not true. From (29), we would then have x ≥

c +
δd
1−δ

− δ (d − c) which implies

δa − δ (1 − δ) x − δ (a − d) −

1 − δ2 (d − c)

≤ δa − δ (1 − δ)


c +

δd
1 − δ

− δ (d − c)


− δ (a − d) −

1 − δ2 (d − c) . (39)

By rearranging terms, the RHS of (39) is equivalent to

− (1 − δ) (1 − δ2)(d − c) (40)

which is negative if and only if d > c. Hence, the LHS of (38) is
negative for d > c , which contradicts the supposition that (38)
is not true. From this contradiction, we conclude (38) is true for
d > c. Namely, q (α) is increasing in α for d > c .

If d = c , (40) implies

δa − δ (1 − δ) x − δ (a − d) −

1 − δ2 (d − c)

= 0 ⇒
∂q (α)

∂α
= 0. �

Proof of Theorem 7. First note that if α1
≤ α then qt = 0 ∀t in

which case Q T
= 1. From here on, assume α1

∈

α, 1


. If d > c

then, with the affine PMPBE, q (α) = A + B
 1

α


for some A and B

where B < 0 and A + B < 1. Then

αt
=

αt−1

1 − qt−1


1 − αt−1qt−1

=

αt−1

1 − A −

B
αt−1


1 − αt−1


A +

B
αt−1


qt = A + B


1
αt


= A + B

1 − αt−1

A +

B
αt−1


αt−1


1 − A −

B
αt−1


 . (41)

Since B ≠ 0, we can invert qt−1
= A + B


1

αt−1


to derive αt−1

=

B
qt−1−A

. Insert this expression in (41),

qt = A + B


1 −


B

qt−1−A


A +

B
B

qt−1−A




B
qt−1−A


1 − A −

B
B

qt−1−A




= qt−1

1 − A − B
1 − qt−1


. (42)

By B < 0 and αt < 1, we have A + B > A + B
 1

αt


= qt , ∀t . By

B < 0 and that αt decreasing over time, we have that qt decreasing
over time. Hence, 1 − q1 ≤ 1 − qt−1, ∀t > 2. Therefore, qt ≤

1−A−B
1−q1


qt−1. As this holds for all t , it implies

qt ≤


1 − A − B
1 − q1

t−1

q1 = νt−1q,

where ν ≡


1−A−B
1−q1


∈ (0, 1). Hence,

T
t=1


1 − qt

2
>


T

t=1


1 − νt−1q

2

.

Toprove this theorem, it is then sufficient to show limT→∞

T
t=1

1 − νt−1q


> 0, or equivalently limT→∞

T
t=1


1 − νtq


> 0,

which, because q ∈ (0, 1), is true if limT→∞

T
t=1


1 − νt


> 0,
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which is equivalent to


∞

t=1 log

1 − νt


> −∞. Since ν ∈ (0, 1)

then
∞
t=1

log

1 − νt

= −


ν +

ν2

2
+

ν3

3
+ · · ·


+


ν2

+
ν4

2
+

ν6

3
+ · · ·


+ · · · +


νt

+
ν2t

2
+

ν3t

3
+ · · ·


+ · · ·


= −


ν + ν2

+ ν3
+ · · ·


+

1
2


ν2

+ ν4
+ ν6

+ · · ·


+
1
3


ν3

+ ν6
+ ν9

+ · · ·

+ · · ·


= −


ν

1 − ν
+

1
2

ν2

1 − ν2
+

1
3

ν3

1 − ν3
+ · · ·


= −

ν

1 − ν


1 +

1
2

ν

1 + ν
+

1
3

ν2

1 + ν + ν2
+ · · ·


≥ −

ν

1 − ν


1 + ν + ν2

+ · · ·


= −
ν

(1 − ν)2
> −∞. �
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