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Avoiding market dominance: product
compatibility in markets with network effects
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As is well recognized, market dominance is a typical outcome in markets with network effects. A
firm with a larger installed base offers a more attractive product which induces more consumers to
buy its product which produces a yet bigger installed base advantage. Such a setting is investigated
here but with the main difference that firms have the option of making their products compatible.
When firms have similar installed bases, they make their products compatible in order to expand
the market. Nevertheless, random forces could result in one firm having a bigger installed base,
in which case the larger firm may make its product incompatible. We find that strategic pricing
tends to prevent the installed base differential from expanding to the point that incompatibility
occurs. This pricing dynamic is able to neutralize increasing returns and avoid the emergence of
market dominance.

1. Introduction

� Markets for products with network effects face the following conundrum. The value of
the good to consumers is greatest when a single product dominates, as then network effects
are maximized. However, the dominance of a single product typically means the presence of a
monopoly, in which case consumers suffer the usual welfare losses from an excessively high
price.

One possible solution to this conundrum is to have multiple firms offer compatible products.
If there is complete compatibility then there are no foregone network effects, and the presence
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of viable competitors means price competition is operative. In fact, this was the basis for one of
the proposed structural remedies in the Microsoft case. Referred to as the Baby Bills solution,
the proposal was to divide the Windows monopoly into several identical companies which would
initially have compatible (in fact, identical) products. Key to the remedy’s appeal is that by
initializing the market with compatible products, these newly created competitors would have an
incentive to maintain compatibility over time.1

For product compatibility to represent a long-run solution to the problem of network effects,
two conditions must then be satisfied. First, firms must initially find it in their interests to make
their products compatible. Second, there must be incentives to maintain compatibility when, in
response to future developments, differences emerge in firms’ installed bases.

There are a number of articles that explore the first condition, including Katz and Shapiro
(1986), Economides and Flyer (1997), Cremer, Rey, and Tirole (2000), Malueg and Schwartz
(2006), and Tran (2006).2 The standard model is a two-stage structure; in the first stage, firms
make compatibility decisions and, given products are or are not compatible, they engage in price
or quantity competition (for either one or two periods). Consistent with the Microsoft setting,
both firms must agree for their products to be compatible. There are two primary forces that
influence whether or not compatibility occurs in equilibrium. First, compatibility enhances the
value of firms’ products by increasing network effects. As this draws more consumers into the
market, firms have a mutual interest in making their products compatible. Second, when firms
have different installed bases, the larger firm loses an advantage with compatibility. In contrast,
the smaller firm always prefers products to be compatible because it benefits through both effects.
Existing work has shown that if firms are not too different—either in terms of installed bases or
other traits—then products are compatible.

Having established that there are initial market conditions that would result in firms choosing
to make their products compatible, this leads us to the second issue, which is the long-run viability
of compatible technologies. Even if firms are initially similar and make their products compatible,
randomness in demand and other shocks will surely lead to asymmetric installed bases. Could a
modest difference in installed bases induce the current market leader to choose incompatibility
in a march toward dominance? If so, then creating a structure with initially compatible products
may only delay—but not prevent—increasing returns from kicking in and creating a monopoly.
Or are there forces that would maintain incentives for compatibility even when the installed base
differential is significant? More generally, are compatible products stable in the long run, or can
we expect that eventually market dominance will emerge?

To explore long-run market structure issues when network effects are present, there is a
growing body of work, including Mitchell and Skrzypacz (2006), Llobet and Manove (2006),
Cabral (2007), Driskill (2007), and Markovich (2008). However, none of these models allow
firms to make their products compatible, and thus cannot address the issue of whether compatible
products are stable in the long run.

The modelling innovation of this article is to endogenize product compatibility in a dynamic
stochastic setting so as to address the long-run market structure of a product market characterized
by network effects. In each period, firms first decide on compatibility and then price. Demand and
customer turnover are stochastic, which means that firms are very likely to end up with asymmetric
installed bases even if they begin identical and choose compatible products. Although consumers
are myopic, firms dynamically optimize. A Markov perfect equilibrium is numerically solved for,
and we assess the frequency with which market dominance occurs and explore its determinants.

Our main finding is that compatible products can indeed be stable in the long run. What
underlies this finding is a dynamic that can neutralize increasing returns and prevent market

1 These Microsoft clones were colloquially dubbed “Baby Bills” as a play on the term “Baby Bells”, which is itself
a colloquialism for the Regional Bell Operating Companies created with the breakup of the Bell System in 1984. For
details on the Baby Bills solution, see Levinson, Romaine, and Salop (2001).

2 Some of this work is discussed in the review of Farrell and Klemperer (2007).
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dominance from emerging. As long as network effects are not too strong, firms that begin with
comparably sized installed bases will choose to make their products compatible. Furthermore,
if the installed base differential should grow—even to the point that the larger firm makes its
product incompatible—the smaller firm prices aggressively so as to reduce the differential and
thereby maintain or restore mutual incentives for product compatibility. This pricing dynamic is
sufficiently powerful to sustain compatible products in the long run and prevent market dominance
from emerging. Interestingly, if a product has stronger network effects, it is possible that this
strategic pricing effect is so intensified that it actually becomes more likely that products are
compatible.

The model is described in Section 2, and the definition and computation of equilibrium
are discussed in Section 3. As a benchmark, Section 4 covers the static Nash equilibrium for
the compatibility-price game. Markov perfect equilibria are reviewed in Section 5, and the
implications of product compatibility for market dominance are explored in Sections 6 and 7,
with the latter focusing on the role of network effects. A welfare analysis of various policy regimes
is examined in Section 8, and we conclude in Section 9.

2. Model

� Our objective is to provide some general insight about the long-run stability of compatible
technologies in the midst of network effects. Toward that end, we chose not to tailor the model to
a specific product—such as operating systems—but rather to develop a more generic model that
encompasses the key forces at play in many markets characterized by network effects.

� State space and firm decisions. The model is cast in discrete time with an infinite horizon.
Although our attention in this article is limited to when there are just two firms, the model
will be described for the more general case of N ≥ 2 firms. These firms sell to a sequence of
heterogeneous buyers with unit demands. At the start of a period, a firm is endowed with an
installed base which represents consumers who have purchased its product in the past. Let bi ∈
{0, 1 , . . . , M} denote the installed base of firm i at the start of a period where M is the maximal
size of the installed base.

Given (b1 , . . . , bN ), firms engage in a two-stage decision process in which they choose
compatibility in stage 1 and then price in stage 2. In stage 1, each firm decides whether or not
to “propose compatibility” with each of the other firms. Let dij ∈ {0, 1} be the compatibility
choice of firm i with respect to firm j, where dij = 1 means “propose compatibility.” To actually
achieve compatibility requires that both firms propose it. Thus, the technologies of i and j are
“compatible” if and only if dij · dji = 1. Requiring both firms to consent is consistent with a
number of markets, including those involved in the Microsoft case. Furthermore, the analysis
promises to be more interesting than when a firm can, by itself, make its product compatible.3

After compatibilities are determined, firms simultaneously choose price. Let pi denote the price
of firm i.

Although firms can influence compatibility and price, we do not allow interfirm payments
which would permit a firm to induce a competitor to make its product compatible through
appropriate compensation. This assumption is common in the literature on network effects.
Malueg and Schwartz (2006) summarize the arguments in its favor, of which the most compelling
is that such payments may not be permitted by the antitrust authority, as they provide fertile
grounds for firms to collude.

This is clearly a stylized modelling of compatibility, but should serve our purposes well. Our
primary interest is in understanding the incentives for compatibility, and that means learning
when firms prefer compatibility. We have then given them maximal flexibility by ignoring

3 In some markets, it may be viable for consumers to purchase converters to achieve compatibility. The implications
of that option are explored in Farrell and Saloner (1992) and Choi (1996, 1997).
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any technical constraints and assuming compatibility is costless to change. Furthermore, this
modelling approach means that compatibility is not a state variable, and this is important in
keeping the dimensionality of the state space manageable. After presenting our main results, we
argue that they are likely to be robust to having a cost to changing compatibility.

� Demand. Demand in each period comes from the replacement of a randomly selected old
consumer (who previously purchased) with a new consumer. There is one new consumer each
period, and her buying decision is based on the following discrete choice model. Let ε i be the
idiosyncratic preference of the buyer for firm i’s product in the current period. The utility that the
consumer gets from buying from firm i is

vi + θg

(
bi + λ

∑
j �=i

di j d ji b j

)
− pi + εi .

bi + λ
∑

j �=i di j d ji b j is the effective installed base of firm i given the set of compatible technologies
where λ ∈ [0, 1] allows for the value of the installed base of other compatible technologies to
be worth less to consumers of firm i’s product. vi is a measure of intrinsic product quality which
is assumed to be common across firms: v = vi and is also fixed over time.4 Network effects are
captured by the increasing function θg(·), where θ ≥ 0 is the parameter that controls the strength
of network effects. We will refer to the sum of these two factors, vi + θg(·), as quality. The
buyer can also choose to purchase an outside good with utility v0 + ε0. As the intrinsic quality
parameters only affect demand through the expression v0 − v, without loss of generality we set
v = 0. The consumer’s idiosyncratic preferences (ε0, ε1 , . . . , εN ) are unobservable to firms.

A new consumer buys from the firm offering the highest current utility. We are then assuming
consumers make myopic decisions (or, equivalently, they have static expectations about the future).
By having a parsimonious representation of consumer decision making, we are able to have a rich
modelling of firm choice with respect to price and compatibility. An important though challenging
extension of our work is to allow consumers to be forward looking with rational expectations. For
some recent research along those lines—though not allowing for endogenous compatibility—see
Cabral (2007) and Driskill (2007).

Assuming (ε0, ε1 , . . . , εN ) are independently extreme value distributed, the probability that
firm i makes a sale to a new consumer is

φi (p; d, b) ≡ exp
(
θg

(
bi + λ

∑
j �=i di j d ji b j

) − pi

)
exp(v0) + ∑N

j=1 exp
(
θg

(
bj + λ

∑
k �= j d jkdk j bk

) − pj

) ,

where p is the vector of prices of all firms, d is the vector of compatibility choices, and b is the
vector of installed bases. Note that if v0 = −∞ then φ0(p; d, b) = 1 − ∑N

i=1 φi (p; d, b) = 0, so
the outside good is hopelessly unattractive and a consumer will buy from one of the N firms
with probability one. In that case, expected market demand equals one in each period and, most
importantly, is independent of firms’ installed bases and any decisions regarding compatibility
and price. Those decisions will only influence a firm’s expected market share. The case of
v0 = −∞ is referred to as the case when market size (or demand) is fixed. When instead v0 is not
−∞, then the expected market size is endogenous. In particular, a firm can increase its expected
demand without necessarily decreasing the expected demand of its rivals.

� Network effects and transition probabilities. In modelling network effects, we will
assume they are bounded in the sense that g(bi) = g(m) if bi ≥ m for some m ≤ M . Bounding the

4 An important research and policy question is how endogenous compatibility affects innovation incentives. We
intend to explore this question in the future by allowing firms to invest in quality, in which case vi will be endogenous.
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network effect is as specified in Cabral and Riordan (1994), though in their context it was learning
by doing. Although the results reported here are based on linear network effects—g(bi ) = bi

m
if

bi ≤ m—we have also allowed g to be convex, concave, and S shaped and the main conclusions
of the article are robust.

�(bi) denotes the probability that the installed base of firm i depreciates by one unit. We
specify �(bi ) = 1 − (1 − δ)bi , where δ ∈ [0, 1] is the rate of depreciation. This specification
captures the idea that the likelihood that a firm’s installed base depreciates increases with the
size of its installed base. δ would be expected to be higher where consumer turnover is higher or
products have shorter lives so that consumers need to return to the market at a higher rate.5

Letting qi ∈ {0, 1} indicate whether or not firm i makes the sale, its installed base changes
according to the transition function

Pr(b′
i | bi , qi ) =

{
1 − �(bi ) if b′

i = bi + qi ,

�(bi ) if b′
i = bi + qi − 1,

where, at the upper and lower boundaries of the state space, we modify the transition probabilities
to be Pr(M | M , 1) = 1 and Pr(0 | 0, 0) = 1, respectively.

3. Equilibrium

� Bellman equation and strategies. In working backward through the compatibility and
pricing decisions, we use the following notation:

• V i(b) denotes the expected net present value of future cash flows to firm i in state b before the
compatibility decisions have been made.

• U i(d, b) denotes the expected net present value of future cash flows to firm i in state b after the
compatibility decisions have been made and revealed to all firms.

We use d(b) and p(d, b) to denote the compatibility and pricing strategies in equilibrium.
Given compatibility choices d and installed bases b, the net present value of future cash flows to
firm i is given by

Ui (d, b) = max
pi

φi (pi , p−i (d, b); d, b)pi + β

N∑
j=0

φ j (pi , p−i (di , b); d, b)V i j (b), (1)

where p−i(d, b) are the prices charged by firm i’s rivals in equilibrium (given installed bases and
compatibility choices), the (constant) marginal cost of production is normalized to be zero, β ∈
[0, 1) is the discount factor, and V i j (b) is the continuation value to firm i given that firm j wins
the current consumer.

Given any feasible vector of compatibility choices d, differentiating the right-hand side of
equation (1) with respect to pi and using the properties of logit demand yield the first-order
condition

−φi (1 − φi )(pi + βV ii ) + φi + β
∑
j �=i

φiφ j V i j = 0. (2)

The pricing strategies p(d, b) are the solution to the system of first-order conditions.
Folding back from pricing to compatibility decisions, given installed bases b, the net present

value of future cash flows to firm i is given by

Vi (b) = max
di ∈{0,1}N−1

Ui (di , d−i (b), b), (3)

5 One motivation for this specification is that if bi old consumers were to independently “die” with probability δ,
then the probability of at least one dying is 1 − (1 − δ)bi . The number of deaths in a period is then capped at one as a
simplying approximation.
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where di = (di1 , . . . , dii−1, dii+1 , . . . , diN ) and d−i(b) are the compatibility choices of firm i’s rivals
in equilibrium (given installed bases). Because firm i has 2N−1 feasible compatibility choices, the
size of the choice set is increasing exponentially in the number of firms.

We focus attention on Markov perfect equilibria (MPE). As firms are ex ante symmetric—in
the sense that they face the same demand and cost primitives—we focus on symmetric MPE.
It is easiest to understand what the symmetry restriction entails if N = 2.6 In this case, the
compatibility decision taken by firm 2 in state (b1, b2) = (b′, b′ ′) is identical to the compatibility
decision taken by firm 1 in state (b1, b2) = (b′ ′, b′), and similarly for the pricing decision and
value function. This means that firms are required to behave identically if their installed bases
are identical, but that they may behave differently if their installed bases are different. With a
symmetric MPE, any ex post asymmetries between firms arise endogenously as a consequence
of firms’ pricing and compatibility decisions for realized demand and the random depreciation
of their installed bases. Finally, we follow the majority of the literature on numerically solving
dynamic stochastic games by restricting attention to pure strategies (Pakes and McGuire, 1994,
2001).

� Computation and parameterization. As with many other dynamic models, the multiplicity
of MPE is a concern. Unfortunately, it is not practical to compute all of them using the homotopy
method proposed in Besanko et al. (2005), because our game is more complex (with both
compatibility and pricing decisions). We therefore develop an algorithm that computes a particular
kind of equilibrium, namely the limit of a finite-horizon game as the horizon grows to infinity.
This is a widely used selection criterion in the theoretical literature on dynamic games.

The idea is as follows: given continuation values that encapsulate the value of future play
and installed bases, in any given state it is as though firms are playing a two-stage game of
making first compatibility and then pricing decisions. In the last period of a finite-horizon game,
the continuation values are zero. Hence, we can solve for the subgame-perfect equilibrium of the
two-stage game. In the previous-to-last period, the continuation values are given by the equilibrium
payoffs of the last period. Continuing this line of thought, we can construct an algorithm that
computes the limit of a finite-horizon game by iterating backward in time.

It is worth pointing out two important differences to the widely used Pakes and McGuire
(1994) algorithm. First, in any given state, we solve for the subgame-perfect equilibrium of
the two-stage game of compatibility followed by pricing decisions while taking as given the
continuation values of all firms. The Pakes and McGuire (1994) algorithm, in contrast, computes
only a best reply for one firm, taking as given both the continuation value of that firm and the
strategies of its rivals. Second, whereas the initial guess for the value function is arbitrary in the
Pakes and McGuire (1994) algorithm, using zero as the initial guess reflects the fact that the
continuation values are zero in the last period of a finite-horizon game and is thus a key part of
our algorithm.

Although we focus on the limit of a finite-horizon game, multiplicity of MPE remains
a concern. Because products are compatible between firms i and j if and only if both firms
propose compatibility, then, for any state, there is always an equilibrium outcome in which
firms’ products are incompatible. When it is also an equilibrium for products to be compatible,
we select that equilibrium because: (i) our interest is in exploring the implications of product
compatibility; and (ii) the equilibrium with compatible products Pareto dominates the one with
incompatible products (except when compatibility does not matter, such as when λ = 0). In
the event that a firm is indifferent about whether or not to make its product compatible, we
assume it proposes incompatibility.7 At least when there are just two firms (which is the market
structure of focus in this article), this selection criterion takes care of multiplicity issues at the
compatibility stage. With this selection criterion in place, our algorithm always converged and

6 See, for example, Doraszelski and Satterthwaite (2007) for a formal definition of symmetry if N > 2.
7 Experimentation with the tie-breaking rule revealed that it does not make a difference for our results.
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resulted in a unique equilibrium. A detailed description of our algorithm can be found in the
Appendix.

The key parameters of the model that govern whether firms choose compatibility are the
strength of the network effect θ , the degree of compatibility λ, the customer turnover rate δ, and
the value of the outside option v0. We assume v0 = 0, so that market size is sensitive to firms’
compatibility and price decisions, but also briefly contrast results with when v0 = −∞ so that
market size is fixed.8 The lower bound for customer turnover is zero and corresponds to the not
very realistic case where consumers live or products last forever, which is achieved when δ =
0. If δ is sufficiently close to one, then again the industry never takes off. We consider many
values for δ between these extremes. The two extremes of λ = 0 and λ = 1 are explored along
with the intermediate case of λ = .5. Finally, we investigate a range of values for the strength of
network effects: θ ∈ {0, 1, 2, 3, 4}. Although we extensively vary the key parameters, we hold
the remaining parameters constant at N = 2, m = 15, M = 20, and β = 1

1.05
, which corresponds

to a yearly interest rate of 5%. We have no reason to think that our results are sensitive to these
parameters (and we did experiment with various values for m and M).

Although the model is not intended to fit any particular industry, we feel that our parameter
values are reasonable when comparing the own-price elasticity for our model with empirical
estimates for products with network effects. As representative examples of the equilibria for our
model, the own-price elasticity is −.77 for one parameterization (the Tipping equilibrium shown
in section 5) and −.92 for another (the compatability equilibrium shown in section 5). As a point
of comparison, Dranove and Gandal (2003) and Gandal, Kende, and Rob (2000) report own-price
elasticities of −1.20 for DVD players and −.54 for CD players, respectively, whereas Clements
and Ohashi (2005) report own-price elasticities ranging from −2.15 to −.18 for video game
consoles. Other studies find evidence of much more elastic demand: Doganoglu and Grzybowski
(2007) and Ohashi (2003) report own-price elasticities ranging from −5.04 to −4.20 for mobile
telephony and from −18.84 to −12.51 for VCRs, respectively.

4. Static equilibrium

� Prior to characterizing equilibria for the dynamic game, it is useful to first understand the
incentives for compatibility in the static model. The static equilibrium is derived by setting β = 0,
in which case firms choose price to maximize current profit. Installed bases matter only because
of how they affect the current value that consumers attach to firms’ products; they are not an
instrument to later dominance.

Firm 1’s equilibrium price, p1(b1, b2, d(b1, b2)), depends on its own installed base, b1,
its rival’s base, b2, and whether firms’ equilibrium compatibility choices result in compatible
products, which is represented by d(b1, b2) and thus also depends on firms’ installed bases.
Representative of our findings is Figure 1, where we have plotted firm 1’s equilibrium price
against firms’ installed bases. Also reported is the compatibility region—that is, d(b1, b2)—which
are the states for which both firms prefer compatibility and thus their products are compatible.
When compatibility affects market demand (λ = .5 or λ = 1), products are compatible when
firms’ installed bases are sufficiently similar in size. The forces at work are basically the same as
those in other static models that allow for compatibility choice, and are most clearly identified in
Cremer, Rey, and Tirole (2000). We review and elaborate upon them below.

Holding price fixed, there are two quantity effects from firms making their products
compatible. Compatibility raises firm i’s effective installed base from bi to bi + λbj, which
then increases the value that consumers attach to its product by θ [g(bi + λbj) − g (bi)]. Each
firm’s product is more attractive relative to the outside option. Firms then have a mutual interest in
having compatible products because both benefit from drawing more consumers into the market.
This we refer to as the market expansion effect.

8 In unreported results, we find that our conclusions are robust to assuming v0 ∈ {−3, − 1, 1}.
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FIGURE 1

STATIC EQUILIBRIA
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A second quantity effect arises when firms have different installed bases. In that situation,
compatibility reduces the quality differential between their products which, generally, harms the
firm with a bigger installed base. In other words, the larger firm has an edge because of its installed
base and that edge is partially (when λ = .5) or fully (when λ = 1) lost when products are made
compatible. We call this the business gift effect, as it means enhancing the business-stealing effect
of one’s rival.9

9 In the Appendix, it is shown that sufficient conditions for the business gift effect to harm the firm with the larger
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Supplementing these quantity effects are price effects that can best be understood through
the following decomposition when λ = 1. Suppose the initial state is (b1, b2) = (b′, b′′) where
b′ < b′ ′. Compatibility can then be decomposed into two parts: it causes firms’ effective installed
bases to shift from (b′, b′ ′) to (b′ ′, b′ ′) and then from (b′′, b′ ′) to (b′ + b′ ′, b′ + b′ ′). As the first
shift only improves the smaller firm’s quality, its price rises and the larger firm’s price falls.10 The
second shift causes both firms’ prices to increase as the quality of their products rises relative to
the outside good.11 The first price effect is ambiguous as to how it impacts profitability, although
the second price effect amplifies the market expansion effect and thus further enhances the value
to making products compatible.

We can now use the market expansion and business gift effects to explain why compatibility
emerges when firms’ installed bases are sufficiently similar in size. Suppose firms have identical
installed bases and recall that firms are static profit-maximizers in this exercise. Both firms
experience higher profit by having compatible products because they take demand away from the
outside good (which is the market expansion effect) and neither firm loses any advantage over its
competitor because relative quality is unaffected (that is, there is no business gift effect). Now
suppose firms’ bases are close but not identical. With compatibility, the larger firm loses only
a small relative quality advantage over the smaller firm (because similar bases means similar
qualities) but there is a discrete jump in absolute quality with compatibility. Hence, the market
expansion effect exceeds the business gift effect when a firm’s installed base is slightly larger than
that of its rival. Obviously, the firm with a smaller base is better off with compatible products. This
explains why there is an area around the diagonal in which firms agree to make their products
compatible, as can be seen in Figure 1. Now move the bases farther off of the diagonal. The
business gift effect rises in importance—as the larger firm gives up a greater quality advantage—
until it exceeds the market expansion effect; at that point the larger firm prefers that products be
incompatible.12

This explanation is confirmed when one examines the case when there is no outside good
(v0 = −∞). Because the market expansion effect vanishes, only the business gift effect is
operative, which would argue that the larger firm would never want to have compatible products.
Indeed, when the market size is fixed, compatibility never occurs in equilibrium as long as firms
have different installed bases.

5. Dynamic equilibrium

� For the primary dynamic forces of our model to be at work, the relevant part of the parameter
space occurs when compatibility matters, network effects are not weak, and the rate of customer
turnover is neither too low (so that the state stays away from the bounds) nor too high (so the
“investment” incentive is not weak). In that part of the parameter space, two types of equilibria
occur, which we refer to as Tipping and Compatibility. These are by far the most insightful for
learning about dynamic competition, and will be the focus of our attention. Throughout most
of this section, we assume v0 = 0, so that market demand is variable, and at its conclusion we
discuss what happens when market size is fixed.13

installed base are that g is linear or concave and/or λ � 1. If g is sufficiently convex and λ �1, it is possible that the
business gift effect instead harms the firm with the smaller installed base.

10 For our demand structure, Anderson, de Palma, and Thisse (1992, p. 266) prove that a firm’s equilibrium price
is increasing in its quality (or installed base). Because prices are strategic complements, a firm’s equilibrium price is
decreasing in the other firm’s quality.

11 If firms have a common quality (which is composed of both intrinsic quality and network effects), then the
symmetric equilibrium price can be shown to be increasing in that common quality as long as exp (v0) > 0 (that is, market
size is variable).

12 We have indeed confirmed that where incompatibility occurs, the smaller firm prefers to have compatible products
but it is vetoed by the larger firm.

13 For a description of equilibria for a more comprehensive set of parameterizations, see the Appendix.
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FIGURE 2

TIPPING EQUILIBRIUM

0
5

10
15

20

0
5

10
15

20

0

1

2

3

b
1

Price

b
2

p
1
(b

1
,b

2
)

0 5 10 15 20
0

5

10

15

20

*
*

*
*

b
1

b
2

Compatibility

0
5

10
15

20

0
5

10
15

20
0

0.05

0.1

b
1

Transient distribution after 5 periods

b
2

μ 5
(b

1
,b

2
)

0
5

10
15

20

0
5

10
15

20
0

0.05

0.1

b
1

Transient distribution after 15 periods

b
2

μ 1
5
(b

1
,b

2
)

0
5

10
15

20

0
5

10
15

20
0

0.05

0.1

b
1

Transient distribution after 25 periods

b
2

μ 2
5
(b

1
,b

2
)

0
5

10
15

20

0
5

10
15

20
0

0.05

0.1

b
1

Limit distribution

b
2

μ ∞
(b

1
,b

2
)

Compatibility (∗ indicates compatible products) and price, transient and limit distribution. θ = 3, λ = 1, δ = .06.

� Tipping equilibrium. A Tipping equilibrium has the following properties: (i) intense price
competition when firms’ installed bases are of comparable size; (ii) the limit distribution for
installed bases is bimodal with a lot of mass at highly asymmetric states; and (iii) products
are generally incompatible. An example of a Tipping equilibrium is shown in Figure 2. The
policy function for a Tipping equilibrium is characterized by a deep trench along and around the
diagonal. In Figure 2, price is actually negative—below marginal cost—for some states near the
diagonal. Sufficiently off of the diagonal, price is relatively high. This equilibrium is similar to
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that found in models with increasing returns such as arises with advertising (Doraszelski and
Markovich, 2007) and learning by doing (Besanko et al. 2005).14

When firms have sufficiently disparate installed bases, dynamic competition largely ceases
as reflected in relatively high prices (these are the plateaus off of the diagonal). Due to network
effects, the profitable strategy for the smaller firm is to accept having a low market share. If
instead it were to try to supplant the larger firm, it would need to price at a considerable discount
in light of the quality disadvantage emanating from a smaller installed base and that products are
incompatible. Furthermore, low pricing would have to continue for an extended period of time
in order to eliminate the installed base differential. Because such an aggressive strategy is not
profitable and thus not pursued, prices are high and the larger firm reaps large profits due to its
high market share by virtue of having a better product (which comes from a bigger installed base
and network effects).

It is this “prize” to a firm with a significant installed base advantage that causes competition
to be so intense when firms have comparable installed bases. A firm knows that if it were to
gain such an advantage, the other (smaller) firm would accept its position in the market and the
larger firm would reap high profits. We then have a deep trench along and around the diagonal
which indicates that prices are low. Each firm focuses on fighting its rival to become the dominant
firm. Note that for states in the trench, firms’ products are incompatible except possibly when
b1 = b2.15

To describe how firms’ installed bases evolve, the T-period transient distribution describes
the frequency with which the state (b1, b2) takes a particular value after T periods, starting from
state (0, 0) in period 0. A comparison of the transient distributions after 5, 15, and 25 periods in
Figure 2 describes how the state is changing over time. Turning from the short run to the long
run, the limit (or ergodic) distribution gives the frequency with which a state occurs after many
periods.16

As shown in Figure 2, the limit distribution on installed bases is bimodal, which indicates
that it is quite likely market dominance will emerge. Once one of the firms gains an advantage in
terms of installed bases, the strength of network effects transforms it into a long-run advantage.
The movement toward skewed outcomes is apparent by following the transient distribution over
time; more and more mass is dispersed away from the diagonal. The pricing behavior of firms
contributes to the emergence and persistence of market dominance because the firm with the
smaller installed base generally accepts its position by not pricing aggressively. The Tipping
equilibrium embodies the quintessential property of network effects which is that the market
“tips” to one firm dominating as soon as it has an advantage.

A Tipping equilibrium occurs when the network effect is strong—it does not occur for θ

∈ {1, 2} but does arise when θ ∈ {3, 4}—and customer turnover is modest (δ is low).17 For a
firm to price aggressively and forego current profit, the prospect of future dominance by building
its installed base must be sufficiently great. This requires that the network effect is sufficiently
strong and the installed base does not deteriorate too rapidly.

Result 1 (Tipping equilibrium). When the network effect is strong and customer turnover is
modest, equilibrium is characterized by incompatible products, intense price competition when
firms’ installed bases are of comparable size, and tipping toward market dominance when one
firm gains an advantage in terms of its installed base.

14 This is also the case with capacity investment with price competition (Besanko and Doraszelski, 2004; Chen,
2009), although it is not an increasing returns story.

15 Interestingly, products are not always compatible on the diagonal. Incompatibility occurs when firms price below
marginal cost because of their eagerness to increase their installed bases. As a result, compatibility would reduce current
profit because it increases demand and each unit sold is at a loss.

16 More formally, let P be the (M + 1)2 × (M + 1)2 transition matrix of the Markov process of industry dynamics.
The transient distribution after T periods is given by μT = μ0 PT , where μ0 is the 1 × (M + 1)2 initial distribution. The
limit distribution μ∞ solves the system of linear equations μ∞ = μ∞ P .

17 The exact parameter configurations for which a Tipping equilibrium occurs can be found in the online Appendix.
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FIGURE 3
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Compatibility (∗ indicates compatible products) and price, transient and limit distribution. θ = 3, λ = 1, δ = .08.

� Compatibility equilibrium. There is another type of equilibrium which is new to the
increasing returns literature and arises solely because firms have the option to make their products
compatible. A Compatibility equilibrium has the following properties: (i) high prices when firms’
installed bases are of similar or highly disparate size but intense price competition when modestly
different; (ii) the transient and limit distributions for installed bases are unimodal with a lot of
mass at reasonably symmetric states; and (iii) products are compatible when firms’ installed bases
are comparable. A representative example is provided in Figure 3. For this type of equilibrium,
let us explore compatibility and pricing in three scenarios: when the installed base differential is
large, small, and modest.
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Large installed base differential. When the differential is large, the outcome is basically the same
as with a Tipping equilibrium. Products are incompatible and the firm with the larger installed
base dominates the market due to network effects. The smaller firm is resigned to its inferior
position in the market and thus dynamic competition is minimal. Prices are relatively high as a
result.

Small installed base differential. When firms have installed bases that are similar in size, prices
are also relatively high, though now products are compatible. Recall from our examination of the
static equilibrium that compatibility reduces the quality differential emanating from firms having
different installed bases, which is detrimental to the firm with a bigger installed base. At the same
time, it enhances both firms’ product quality and thereby expands the market. The former effect
we referred to as the business gift effect and the latter as the market expansion effect. Due to
these two effects, there was a region around the diagonal for which both firms choose to make
their products compatible. These forces are still present in the dynamic equilibrium and are partly
at work in generating the compatibility region for a Compatibility equilibrium.

Although products are compatible, this need not imply the absence of price competition.
For a Tipping equilibrium, firms often make their products compatible when they have identical
installed bases and, at the same time, price very low in order to acquire an advantage in its
installed base. Such dynamic price competition is not observed for a Compatibility equilibrium
when the installed base differential is small. To see why, suppose firms begin with identical
installed bases. Regardless of which firm (if any) wins today’s customer and thereby expands
its installed base, firms expect their products to be compatible tomorrow; this follows from the
compatibility region encompassing asymmetric as well as symmetric states. Thus, a firm which
gains a small installed base advantage does not anticipate gaining a quality advantage in the near
term because compatibility will be maintained; this stifles dynamic price competition.

Modest installed base differential. The most intriguing region occurs when firms have modestly
different installed bases, in which case prices are low as reflected in the dual trenches in the policy
function. As explained below, pricing behavior is largely driven by dynamics associated with
endogenous product compatibility. Whether or not products are compatible tomorrow depends
on firms’ installed bases tomorrow; only if they are sufficiently similar in size will firms mutually
decide to have compatible products. Of course, tomorrow’s state depends on today’s pricing. With
a Compatibility equilibrium, pricing is then driven not only by the prospect of dominating the
market—a force that is ever present in a market with network effects—but also by the strength of
firms’ desire to maintain product compatibility.

To explore the incentives for compatibility, first note that the smaller firm almost always
prefers compatible products—as it is benefited both by the market expansion and business
gift effects—whereas the larger firm prefers compatible products only when the installed base
differential is sufficiently small. Thus, when products are incompatible, it is the larger firm that
prevents it. Let us begin by examining how the smaller firm’s desire for compatibility influences
its pricing behavior.

Corresponding to Figure 3, Figure 4 reports firm 1’s equilibrium price for different states.
The states for which firms’ products are compatible are shaded, and negative (below-cost) prices
are boxed. Prices are high when firms have comparable bases (that is, near the diagonal). As
the state moves farther off of the diagonal—so that the difference in firms’ bases increases—the
smaller firm lowers its price. It does so even though firms’ products are of equal quality (due to
compatibility and λ = 1). In particular, the smaller firm significantly drops its price when the
state approaches the (interior) border of the compatibility region. Its intent is to increase expected
sales and thereby reduce the installed base differential. In Figure 4, firm 1’s price drops from 1.3
to 1.0 when the state moves from (b1, b2) = (4, 9) to (4, 10), where (4, 10) is just on the interior
of the compatibility region. Just outside of the compatibility region, the smaller firm drops price
even more; when the state moves from (4, 10) to (4, 11), firm 1’s price drops from 1.0 to −0.1.
The smaller firm is trying to add to its base in order to move the state back into the region where
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FIGURE 4

PRICE IN COMPATIBILITY EQUILIBRIUM
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A framed box indicates a negative price. A shaded box indicates compatible products. θ = 3, λ = 1, δ = .08.

the larger firm prefers compatibility. Compared to when the state is just inside the compatibility
region, this task is made more difficult because products are no longer compatible, which means
the smaller firm suffers from a quality disadvantage. To compensate for that disadvantage, it
needs to sell its product at an even bigger discount to the larger firm’s product.

In sum, the smaller firm is pricing aggressively in order to keep the differential in installed
bases sufficiently small. Its intent is to pacify, rather than fight, the larger firm, so that the larger
firm will “make nice” (by having a compatible product) rather than “make mean” (by pursuing
monopolization through incompatible products).

Although the larger firm also drops price around the border of the compatibility region,
that apparently is a response to the smaller firm’s pricing behavior—as prices are strategic
complements—rather than an attempt to monopolize. For example, in Figure 4, a movement
in the state from (4, 9) to (4, 10) results in the smaller firm dropping price from 1.3 to 1.0,
whereas the larger firm’s price only falls from 1.8 to 1.7 (and remember that consumers attach
the same utility to their products as they are fully compatible). Examination of the value function
shows that, along the border of the compatibility region, the larger firm only slightly prefers
compatibility, which is why it is willing to price much higher than the smaller firm even though it
might mean the state moves out of the compatibility region. In contrast, the smaller firm strongly
prefers compatibility, which explains why it is willing to price so low in order for the state to
remain in that region.
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It is worth emphasizing that this pricing behavior is quite distinct from what static demand
effects would produce. Within the compatibility region, the relative quality of firms’ products
is identical because products are compatible and λ = 1. In a static model, prices would then
be identical, whereas here the smaller firm has a lower price. Second, price falls sharply just
outside of the compatibility region but eventually rises as the installed base differential becomes
sufficiently large. That is also in support of our dynamic story, as a firm’s static equilibrium price
monotonically declines as its relative quality falls.

A Compatibility equilibrium occurs when network effects are neither weak nor strong and
the effect of compatibility on demand is significant. It is typical when θ ∈ {1, 2} but also occurs
when θ ∈ {3, 4} as long as δ is not too low. If network effects are weak then pricing is largely
uninfluenced by dynamic considerations, whereas if it is strong then the ability to translate a small
installed base advantage into long-run dominance deters the larger firm from making its product
compatible.

Result 2 (Compatibility equilibrium). When the network effect is modestly strong and the effect
of compatibility on demand is strong then equilibrium is characterized by compatible products,
mild price competition, and an absence of market dominance.

Suppose we were now to assume that there is no viable outside option, in which case market
size is fixed and each consumer buys from either firm 1 or firm 2. Running the model when v0 =
−∞, firms are found never to choose to make their products compatible, except possibly when
their installed bases are identical. With a fixed market size, each firm is only interested in having
higher quality relative to its rival, in which case compatibility is always to the detriment of the
larger firm. Hence, a Compatibility equilibrium does not arise, whereas there is a wider array of
parameter values for which a Tipping equilibrium occurs. For example, when θ = 2, firms do
not compete aggressively for dominance when v0 = 0 (that is, there are no Tipping equilibria),
whereas they do compete for dominance for δ ∈ {.04 , . . . , .12}, when v0 = −∞. In sum, fixing
the market size intensifies dynamic price competition, as firms compete to gain an advantage in
terms of their installed base, and there is almost no basis for compatibility.

In concluding this section, let us briefly discuss what we think might happen if there was
a cost to changing compatibility that was neither small (in which case the equilibria would be
almost exactly what we have now) nor large (in which case products would either always or
never be compatible). The Tipping equilibrium ought to persist, although there might be some
mildly asymmetric states in which firms’ products are compatible (assuming they began by being
compatible). Still, we would expect that eventually the differential will become large enough
that the larger firm will incur the cost of switching to incompatibility in order to then dominate
the market. We also believe the Compatibility equilibrium would persist and, in fact, the pricing
effects we have characterized could be more extreme. If firms’ products are compatible and the
larger firm is near the point of preferring incompatibility, the smaller firm would have an even
stronger incentive to price aggressively because once products are incompatible, it will be more
difficult to return to having compatible products given that the larger firm has to be induced to
incur the switching cost. Second, a cost to changing compatibility would mean there is a hysteresis
band around the border of the compatibility region whereby firms’ products remain compatible if
they are currently compatible and remain incompatible if they are currently incompatible. These
changes do not alter the key properties of equilibria, and thus we expect the insight to be robust
to having a cost to changing compatibility.

6. Product compatibility and market dominance

� One of the central questions of this article is understanding to what extent endogenous
product compatibility can prevent market dominance from emerging. If the transient and limit
distributions with respect to installed bases are heavily skewed—putting a lot of mass on
relatively asymmetric outcomes—then market dominance is likely to occur. The extent to which
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FIGURE 5
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Tipping equilibrium (δ = .06, left panel) and Compatibility equilibrium (δ = .08, right panel). θ = 3, λ = 1.

compatibility is feasible can be measured by the parameter λ. Firms effectively do not have the
option of compatible products when λ = 0, as compatibility does not impact demand.

The pricing behavior identified in the previous section creates a compatibility dynamic
which has the potential for maintaining some balance in the market and avoiding dominance.
Suppose firms begin with identical or near-identical installed bases. They generally will find it
optimal to make their products compatible in order to expand the market. With products of similar
quality, firms charge similar prices. At that point, their expected market shares are comparable.
Although, in expectation, future installed bases remain similar in size, random shocks to demand
and customer turnover could result in one of the firms gaining a significant advantage in terms of
installed bases. If that differential becomes large enough, products will no longer be compatible
and firms will price in a manner to perpetuate such a skewed market structure. However, in a
Compatibility equilibrium, there are forces preventing a slight advantage from growing into a
large one. When firms’ installed bases differ and are near the boundary of the compatibility
region, the smaller firm prices aggressively in order to increase its installed base and thereby
shift the state back toward symmetry. When the state is close to but outside of the compatibility
region—so that the larger firm chooses to make its product incompatible—the smaller firm offers
its product at an even larger discount so as to shift the state back into the compatibility region. The
strategic pricing behavior of the smaller firm in the vicinity of the boundary of the compatibility
region acts to keep the state within that region and thus works against market dominance.

The compatibility dynamic is revealed by reporting the resultant force, which measures
the expected movement of the state as determined by the probability-weighted average of the
difference between this and next period’s state. Figure 5 shows the resultant forces for the
parameter configurations in Figures 2 and 3. The left panel of Figure 5 has a Tipping equilibrium
and, therefore, products are incompatible (except perhaps on the diagonal). Once the state is off
of the diagonal, so that firms have different installed bases, the state moves away from symmetry
as the larger firm builds on its advantage. Increasing returns is at work. The right panel of
Figure 5 is for a Compatibility equilibrium and nicely shows how the increasing returns dynamic
can be countered by the compatibility dynamic. There is a strong attraction to the diagonal for a
wide range of states.
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TABLE 1 Mode of Limit Distribution

θ = 2 θ = 3 θ = 4

δ λ = 0 λ = 1 λ = 0 λ = 1 λ = 0 λ = 1

0 (20,20) (20,20) (20,20) (20,20) (20,20) (20,20)
.01 (20,20) (20,20) (20,20) (20,20) (20,20) (20,20)
.02 (19,20) (19,20) (20,20) (20,20) (20,20) (20,20)
.03 (16,16) (16,16) (18,18) (18,18) (18,20) (18,20)
.04 (6,16) (6,16) (5,20) (5,20) (4,20) (4,20)
.05 (3,15) (9,9) (3,18) (3,18) (2,20) (2,20)
.06 (3,11) (8,8) (2,16) (2,16) (1,20) (1,20)
.07 (4,5) (6,6) (1,15) (8,8) (1,17) (1,17)
.08 (3,4) (5,5) (1,14) (7,7) (1,16) (1,16)
.09 (3,3) (4,4) (1,12) (5,5) (0,15) (0,15)
.10 (2,3) (3,3) (1,9) (4,4) (0,15) (6,6)
.11 (2,2) (3,3) (3,3) (4,4) (0,14) (5,5)
.12 (2,2) (2,2) (2,3) (3,3) (0,13) (4,4)
.13 (2,2) (2,2) (2,2) (3,3) (0,11) (4,4)
.14 (1,2) (2,2) (2,2) (2,2) (0,9) (3,3)
.15 (1,1) (2,2) (1,2) (2,2) (2,2) (3,3)

If the distribution is bimodal, then just one of the modes is reported. A framed box indicates that there is a bimodal
distribution under λ = 0 and a unimodal distribution under λ = 1. θ ∈ {2, 3, 4}, λ ∈ {0, 1}, δ ∈ {0, .01 , . . . , .15}.

The real test of this dynamic is examining how the option of compatibility impacts the
distribution on installed bases. Let us begin with a few illustrative examples and then present
more systematic evidence. For two different parameter configurations, Figure 6 reports the set of
states for which products are compatible and the limit distributions when λ = 0 and λ = 1. In the
upper panels of Figure 6, the network effect is moderate (θ = 2), and thus the limit distribution is
unimodal even when compatibility is not an option. Market dominance is not likely to emerge in
that case. As compatibility becomes a possibility (λ = 1), a unimodal distribution persists with
more mass pushed toward symmetric outcomes. Introducing the option of compatibility makes it
more likely that a roughly symmetric state occurs though does not have a significant impact.

As the strength of network effects is increased to θ = 3, endogenous product compatibility
makes a striking difference; see the lower panels of Figure 6. When λ = 0, the limit distribution is
significantly bimodal. Without the prospect of compatibility, it is very likely that one of the firms
will dominate the market. Allowing for products to be compatible has a dramatic effect as the
distribution shifts to being unimodal with a lot of mass around the diagonal. Firms are choosing
to make their products compatible unless the state is reasonably asymmetric.18 Introducing the
option of compatibility makes it vastly less likely that market dominance will emerge.

Table 1 and Figure 7 provide a broader set of confirming results. Table 1 reports the mode
of the limit distribution.19 Highlighted are parameter values for which a bimodal distribution
occurs when compatibility is not an option (λ = 0) and a unimodal distribution occurs when
compatibility is an option (λ = 1). For example, when (δ, θ ) = (.07, 3), the lack of compatibility
results in a highly skewed mode in which one firm has an installed base of 15 units and the
other has only 1 unit. When instead firms have the option of product compatibility, the mode
is symmetric with each having 8 units. Figure 7 reports the expected long-run Herfindahl index
(based on sales) using the limit distribution over states. To the extent that the long-run Herfindahl
index exceeds .5, asymmetries arise and persist. If the customer turnover rate is not too low, the
option of compatibility reduces market concentration and sometimes significantly so.

18 For the case of a very strong network effect (θ = 4), which is not shown, endogenous compatibility does not
matter as, even when λ = 1, products are incompatible and a bimodal distribution arises.

19 A bimodal distribution never occurs for δ > .15.
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FIGURE 6

COMPATIBILITY AND LIMIT DISTRIBUTION

θ ∈ {2, 3}, λ ∈ {0, 1}, δ = .08. ∗ indicates compatible products.
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FIGURE 7

HERFINDAHL INDEX
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θ ∈ {2, 3, 4}, λ = 0 (solid line), and λ = 1 (dashed line), δ ∈ [0, .15].

To summarize, endogenous product compatibility can neutralize the usual increasing returns
mechanism associated with network effects. The trick is keeping the differential in installed bases
sufficiently modest so that the larger firm chooses to make its product compatible. The burden of
ensuring the differential is kept low falls on the smaller firm, whose incentive for compatibility is
much greater, and is reflected in aggressive pricing when the installed base differential becomes
too large. Compatible products can then be stable and, as a result, both firms can have significant
market shares in the long run.20

Result 3 (Avoidance of market dominance). Having the option of product compatibility can result
in a market achieving a relatively symmetric outcome when, in the absence of that option, there
would have been market dominance.

20 This is a useful point to contrast our model and results with another body of work dealing with endogenous
market dominance. Exemplified by Budd, Harris, and Vickers (1993), this literature identifies the tendency for dynamic
competition to move the industry in a joint profit-maximizing direction. As the approach uses asymptotic expansion to
approximate the value and policy functions around the special cases of infinite discounting and infinite uncertainty, it has
been noted that additional effects may operate when away from these special cases and could well dominate the joint-profit
effect. Furthermore, and perhaps most important, firms’ prices in these other models do not affect the future evolution
of the state of the industry; that is, price is a static control variable whereas investment is a dynamic control variable. In
our setting, in contrast, price and compatibility decisions affect both current profit and the future evolution of the state.
Finally, the state in our model is not moving in the direction of maximizing joint profit. This we verified numerically, but
it is most easily seen by noting that joint profits are maximized by one of the firms being priced out of the market so a
monopoly prevails. To the extent that endogenous compatibility helps to avoid market dominance, dynamic competition
does not maximize joint profits.
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TABLE 2 Probability of Compatible Products

δ θ = 1 θ = 2 θ = 3 θ = 4

.04 .87 .03 .00 .00

.06 .96 .90 .00 .00

.08 .91 .95 .93 .00

.10 .84 .90 .94 .93

.12 .76 .81 .86 .90

.14 .68 .73 .80 .83

.16 .59 .66 .73 .72

.18 .52 .59 .66 .66

θ ∈ {1, 2, 3, 4}, λ = 1, δ ∈ {.04, .06, . . . , .18}.

7. Impact of network effects

� Consistent with previous work, Figure 7 shows that market concentration is higher when
network effects are stronger. Where there is a big increase in concentration from a stronger
network effect—such as when θ rises from 2 to 3 for (δ, λ) = (.08, 0) and from 3 to 4 for (δ, λ) =
(.08, 1)—it is because the equilibrium is switching to a Tipping equilibrium. Not surprisingly,
stronger network effects result in higher concentration.

To gain some insight into how network effects and product compatibility interact, let us use
Figure 8 to explore how the equilibrium policy function changes with respect to θ . When network
effects are weak (θ = 1), there is a mild Compatibility equilibrium with a large compatibility
region. As θ is increased, the dual trenches deepen and the compatibility region shrinks because
the larger firm increasingly prefers a monopolization strategy rather than enhancing current
demand through compatibility. As a result, it is all the more important for the smaller firm to
prevent the gap in bases from widening too much, which induces it to price lower along the border
of the compatibility region; hence, the trench deepens as θ rises. Although the limit distribution
does become more dispersed as the network effect rises—indicating that it is more likely that
installed bases will be highly asymmetric—the effect is relatively weak. The real impact of a
stronger network effect is to induce the smaller firm to price more aggressively in order to ensure
that products are compatible. This property highlights the role of the compatibility dynamic in
that market dominance is only mildly increasing when the network effect is strengthened.

Note that the compatibility region in Figure 8 shrinks as θ increases. Nevertheless, it is
not always the case that products are less likely to be compatible when the network effect is
stronger. Table 2 reports the long-run probability that products are compatible using the limit
distribution. When the customer turnover rate is relatively low, the frequency with which products
are compatible is generally lower when the network effect is stronger; for example, when δ = .06,
the frequency with which products are compatible falls from 96% of the time to never as
θ increases from 1 to 3. However, when the customer turnover rate is modestly high, products are
more likely to be compatible when the network effect is stronger. For example, when δ = .14, the
frequency with which products are compatible rises from 68% to 83% as θ increases from 1 to 4,
in spite of the fact that the set of states for which products are compatible is shrinking.

The resolution of this riddle lies in the policy functions. Because the network effect is
stronger, the smaller firm is more aggressive in keeping the installed base differential relatively
low because it fears the larger firm may shift to a monopolization strategy. This aggressive pricing
behavior makes it more likely that the state remains in the compatibility region when θ = 4 than
when θ = 1 even though the region is smaller. Note that this surprising comparative static holds
as long as the equilibrium is Compatibility. But for a Compatibility equilibrium to persist as θ

is increased (and not transform into a Tipping equilibrium), it is necessary that the customer
turnover rate not be too low. That is why δ must be sufficiently high for a stronger network effect
to increase the frequency of compatible products.
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FIGURE 8

COMPATIBILITY AND PRICE, LIMIT DISTRIBUTION
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∗ indicates compatible products. θ ∈ {1, 2, 3, 4}, λ = 1, δ = .14.

Result 4 (Strength of network effect). A stronger network effect increases market concentration.
A stronger network effect decreases the frequency of compatible products when the customer
turnover rate is low and increases the frequency of compatible products when the customer
turnover rate is high.

C© RAND 2009.



476 / THE RAND JOURNAL OF ECONOMICS

8. Welfare effects of compatibility

� In this section, we consider the welfare effects of various policies designed for a market with
network effects. The first policy is one of laissez faire or, as we refer to it below, endogenous
compatibility. The results for a policy of endogenous compatibility are derived by running the
model that we have thus far been analyzing. A second policy is mandatory compatibility, so that
firms optimize with respect to price only, although we impose the condition that products are
compatible. The final policy is prohibited compatibility, which has firms optimize with respect to
price only, given that products are incompatible.21 Results are reported for when products are, in
principle, fully compatible (λ = 1).22

In measuring the performance of these policies, we use the expected net present value of
producer surplus, consumer surplus, and total welfare (the sum of the previous two measures),
starting with zero installed bases. These measures are appropriate if one imagines weighing
various policy options at the inception of a product market, which is typically when such
discussions occur.23 To derive producer surplus at a market’s initiation, we just need to evaluate
a firm’s value function at (b1, b2) = (0, 0). In the Appendix, we describe how we calculated the
net present value of consumer surplus.

As reported in the upper panel of Table 3, firms have an unambiguous ranking of policies.
Firms most prefer that products are mandated to be compatible, and least prefer a policy that
prevents products from being compatible. As we have previously discussed, firms benefit from
having compatible products because of the market expansion effect and, because we are evaluating
these policies when firms are symmetric (both have zero installed bases), the business stealing
effect is less relevant. This factor, by itself, would explain the ranking of policies. But there is a
second factor, which is that these policies have different implications regarding the intensity of
price competition. When products are required to be compatible, there is no basis for aggressive
pricing so as to dominate the market. And when products are prohibited from being compatible,
there is no basis for the mild price competition that arises when products are compatible. Thus,
pricing behavior is, on average, increasingly intense as we move from a policy of mandatory
compatibility to one of endogenous compatibility to one of prohibited compatibility.24 Firms then
most prefer mandatory compatibility because it makes their product more attractive to consumers
and it reduces dynamic price competition.

In contrast to firms, the ranking of policies by consumers depends on the strength of
network effects; see the middle panel of Table 3. When network effects are modest, θ ∈ {1, 2},
consumers most prefer a policy of endogenous compatibility. Policies of mandatory and endoge-
nous compatibility produce a similar frequency of compatible products; as shown in Table 2,
the frequency of compatible products is relatively high under endogenous compatibility. But a
policy of endogenous compatibility has an advantage in that there are episodes in which the
smaller firm prices really low in order to keep the state in the compatibility region; that incentive
is absent under mandatory compatibility. Thus, consumers desire a laissez faire policy which has
firms determining whether their products are compatible.

When instead network effects are strong, consumers can prefer a policy of prohibited
compatibility. When θ = 4 and customer turnover is low, consumers are indifferent between
endogenous and prohibited compatibility because, in either case, products are incompatible
(because a Tipping equilibrium occurs under the endogenous compatibility regime). When instead
customer turnover is modest or high, consumers strictly prefer a policy that prohibits compatible

21 Results are derived for this case by running the original model and setting λ = 0.
22 Qualitatively similar results hold for the case of partial compatibility (λ = .5).
23 Similar conclusions are reached when we use average profit, consumer surplus, and welfare based on the limit

distribution, although there are some differences when network effects are strong (θ = .4) and customer turnover is not
high, δ ∈ {.06, .08, .10}.

24 For the limit distribution, we verified that average price is highest under mandatory compatibility and lowest
under prohibited compatibility, when θ ∈ {1, 2, 3}. When θ = 4, the relative intensity of price competition with these
three policy regimes depends on δ.
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TABLE 3 Net Present Value of Producer Surplus, Consumer Surplus, and Total Welfare

Producer Surplus

θ = 1 θ = 2 θ = 3 θ = 4

δ EC MC PC EC MC PC EC MC PC EC MC PC

.06 5.51 5.60 5.03 6.76 6.96 5.16 3.98 8.78 3.98 3.03 1.65 3.03

.08 5.35 5.45 4.99 6.29 6.51 5.17 7.66 8.02 4.47 3.12 9.76 3.12

.10 5.24 5.34 4.96 5.97 6.20 5.15 7.03 7.41 5.02 8.41 8.92 3.47

.12 5.16 5.26 4.93 5.72 5.97 5.11 6.49 6.96 5.16 7.51 8.23 4.11

.14 5.10 5.20 4.92 5.56 5.81 5.08 6.19 6.63 5.19 6.93 7.69 4.84

Consumer Surplus

θ = 1 θ = 2 θ = 3 θ = 4

δ EC MC PC EC MC PC EC MC PC EC MC PC

.06 12.60 12.45 11.79 17.48 17.20 16.27 28.79 23.77 28.58 39.94 31.63 39.94

.08 12.09 11.94 11.41 16.12 15.73 14.51 21.89 21.43 24.15 36.91 28.53 36.91

.10 11.73 11.59 11.15 14.98 14.61 13.53 19.84 19.21 18.95 25.82 25.27 33.14

.12 11.46 11.33 1.96 14.17 13.81 12.89 18.24 17.52 16.44 23.59 22.55 27.86

.14 11.25 11.13 1.81 13.54 13.23 12.43 16.94 16.27 15.12 21.55 2.45 21.68

Total Welfare

θ = 1 θ = 2 θ = 3 θ = 4

δ EC MC PC EC MC PC EC MC PC EC MC PC

.06 18.11 18.05 16.82 24.24 24.16 21.42 32.78 32.55 32.55 42.97 42.28 42.97

.08 17.44 17.39 16.40 22.41 22.24 19.68 29.55 29.44 28.62 4.03 38.29 4.03

.10 16.97 16.93 16.11 2.95 2.80 18.67 26.88 26.62 23.97 34.23 34.19 36.61

.12 16.62 16.59 15.89 19.89 19.78 18.00 24.73 24.48 21.61 31.10 3.78 31.97

.14 16.34 16.34 15.72 19.10 19.04 17.51 23.13 22.90 2.31 28.48 28.14 26.51

Endogenous compatibility (EC, λ = 1), mandatory compatibility (MC, λ = 1), and prohibited compatibility (PC, λ = 0).
θ ∈ {1, 2, 3, 4}, δ ∈ {.06, .08, . . . , .14}.

products. For those values of δ, endogenous compatibility results in a Compatibility equilibrium.
When firms’ products are required to be incompatible, price competition is made much more
intense because network effects are strong. The gain in surplus from lower prices is sufficient to
offset the loss of value from product incompatibility.

In terms of total welfare, the lower panel of Table 3 shows that a laissez faire policy
is generally preferred except for some cases when network effects are strong. However, that
conclusion could well depend on the particular parameter configurations which result in consumer
surplus being large relative to producer surplus. More robust is the finding that firms prefer that
compatibility be made mandatory, and consumers generally prefer a policy of nonintervention.
Thus, we can expect industry and consumer lobbyists to be on opposing sides of a policy debate.

Result 5 (Welfare effects of compatibility). When network effects are modest, firms prefer a policy
of mandatory compatibility and consumers prefer a policy of endogenous compatibility. When
network effects are strong, firms continue to prefer a policy of mandatory compatibility whereas
consumers prefer a policy of prohibited compatibility (strictly so when customer turnover is not
low).

9. Concluding remarks

� The main contribution of this article is identifying the compatibility dynamic which can
prevent market dominance in markets with network effects. When firms have comparably sized
installed bases, they choose to make their products compatible in order to expand market size.
This occurs at a cost to the firm with the larger installed base because its quality advantage
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over the other firm is diminished when products are compatible. However, as long as installed
bases are sufficiently similar in size, the reduction in relative quality is small relative to the
rise in absolute quality. The challenge to compatibility persisting over time is that, due to the
randomness in demand and customer turnover, the differential in firms’ installed bases could
grow to the point that the larger firm chooses to pursue a dominance strategy and thus makes
its product incompatible. However, there are strong forces preventing a slight differential from
growing into a large one. When firms’ installed bases near the point that the larger firm would
make its product incompatible, the smaller firm prices aggressively in order to increase its installed
base. Thus, strategic pricing keeps the installed base differential from expanding to the point that
incompatibility occurs. Compatible products are then stable. The compatibility dynamic is able
to neutralize increasing returns and result in long-run market structures that are not characterized
by a single dominant firm.

This research project will continue in several directions. First is to extend the model to
a triopoly and explore whether market dominance can be avoided even when market size is
insensitive to firms’ prices. Recall for the duopoly case that a necessary condition for compatible
products is that there is an outside option whose market can be eaten into. When there is a triopoly,
the third firm is an outside option from the perspective of two firms, though one whose value is
endogenous. This suggests that some compatibility may arise even when market size is fixed if
there are more than two firms.

A second research direction is to enrich the model by allowing firms to innovate. Prior to
deciding on compatibility and price, each firm invests in R&D, the outcome of which is stochastic
and affects the intrinsic quality of the good. Does the option of product compatibility reduce
innovation because a firm can free ride as long as products are compatible? Does innovation
offset the compatibility dynamic and allow increasing returns to flourish? Is market dominance
more likely when firms can innovate? These are some of the questions that will be addressed.

Finally, let us remind the reader that a strong assumption in our model is that consumers
have static expectations in that they choose the product with the highest current net surplus and
thus presume that installed bases will not change in the future. An alternative specification is
to assume consumers have rational expectations, their beliefs being based upon the equilibrium-
induced distribution over future installed bases. This modification means a far more complex
model, as now consumer behavior must be solved dynamically along with firms’ behavior. We
leave this challenging task to future research.

Appendix A. Computation and parameterization: technical details

We describe our algorithm here for N = 2. While the state space is

B = {(b1, b2) ∈ {0, 1, . . . , M}2},
with the symmetry restriction in place, it suffices to consider the reduced states space

B♦ = {(b1, b2) ∈ B | b1 ≥ b2}.
Moreover, it suffices to consider two compatibility outcomes in any given state (b1, b2) ∈ B�, namely d12(b1, b2) = d21(b1,
b2) = 0 (incompatible products) and d12(b1, b2) = d21(b1, b2) = 1 (compatible products). Hence, our goal is to determine
the following value and policy functions:

V1(b1, b2), V2(b1, b2),

U1(0, 0, b1, b2), U2(0, 0, b1, b2), U1(1, 1, b1, b2), U2(1, 1, b1, b2),

d1(b1, b2), d2(b1, b2),

p1(0, 0, b1, b2), p2(0, 0, b1, b2), p1(1, 1, b1, b2), p2(1, 1, b1, b2),

where (b1, b2) ∈ B�. The value and policy functions on the full state space can be recovered as needed from the value
and policy functions on the reduced state space by exploiting the symmetry restriction. For example, the value function
of firm 2 in state (b1, b2) /∈ B♦, V2(b1, b2), is identical to the value function of firm 1 in state (b2, b1) ∈ B�, V 1(b2, b1).

The algorithm is iterative. The initial guess for the value functions Ṽ1(b1, b2) and Ṽ2(b1, b2), where (b1, b2) ∈ B�,
is zero to capture the fact that the continuation values are zero in the last period of a finite-horizon game. The algorithm
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takes value functions Ṽ1(b1, b2) and Ṽ2(b1, b2) as the starting point for an iteration and generates updated value functions
V 1(b1, b2) and V 2(b1, b2). Along the way it also computes the remaining value and policy functions.

Each iteration cycles through the reduced state space in some predetermined (but arbitrary) order. In any given
state (b1, b2) ∈ B�, it solves for the subgame-perfect Nash equilibrium of the two-stage game of compatibility followed
by pricing decisions while taking as given the continuation values of both firms. Specifically, the algorithm proceeds as
follows:

(i) Compute the continuation values in state (b1, b2) ∈ B�:

V 10(b1, b2) =
∑

(b′
1,b′

2)∈B

Ṽ (b′
1, b′

2)Pr(b′
1 | b1, 0)Pr(b′

2 | b2, 0),

V 11(b1, b2) =
∑

(b′
1,b′

2)∈B

Ṽ1(b′
1, b′

2)Pr(b′
1 | b1, 1)Pr(b′

2 | b2, 0),

V 12(b1, b2) =
∑

(b′
1,b′

2)∈B

Ṽ1(b′
1, b′

2)Pr(b′
1 | b1, 0)Pr(b′

2 | b2, 1),

V 20(b1, b2) =
∑

(b′
1,b′

2)∈B

Ṽ2(b′
1, b′

2)Pr(b′
1 | b1, 0)Pr(b′

2 | b2, 0),

V 21(b1, b2) =
∑

(b′
1,b′

2)∈B

Ṽ2(b′
1, b′

2)Pr(b′
1 | b1, 1)Pr(b′

2 | b2, 0),

V 22(b1, b2) =
∑

(b′
1,b′

2)∈B

Ṽ2(b′
1, b′

2)Pr(b′
1 | b1, 0)Pr((b′

2 | b2, 1).

(ii) Assume first d12(b1, b2) = d21(b1, b2) = 0 and obtain pricing decisions given incompatible products, p1(0, 0, b1, b2)
and p2(0, 0, b1, b2), in state (b1, b2) ∈ B� by solving the following system of first-order conditions for p1 and p2:

− φ1(·)(1 − φ1(·)) (p1 + βV 11(b1, b2)) + φ1(·) + βφ1(·)(φ0(·)V 10(b1, b2) + φ2(·)V 12(b1, b2) = 0,

− φ2(·)(1 − φ2(·)) (p2 + βV 22(b1, b2)) + φ2(·) + βφ2(·)(φ0(·)V 20(b1, b2) + φ1(·)V 21(b1, b2)) = 0,

where φ0(·), φ1(·), and φ2(·) are shorthand for φ0(p1, p2; 0, 0, b1, b2), φ1(p1, p2; 0, 0, b1, b2), and φ2(p1, p2; 0,
0, b1, b2), respectively. Next, assume d12(b1, b2) = d21(b1, b2) = 1 and obtain pricing decisions given compatible
products, p1(1, 1, b1, b2) and p2(1, 1, b1, b2), in state (b1, b2) ∈ B� by solving the analogous system of first-order
conditions for p1 and p2.

(iii) Compute the value functions given incompatible products, U 1(0, 0, b1, b2) and U 2(0, 0, b1, b2), in state (b1, b2)
∈ B�:

U1(0, 0, b1, b2) = φ1(p1(·), p2(·); 0, 0, b1, b2)p1(·) + β(φ0(p1(·), p2(·); 0, 0, b1, b2)V 10(b1, b2)

+ φ1(p1(·), p2(·); 0, 0, b1, b2)V 11(b1, b2) + φ2(p1(·), p2(·); 0, 0, b1, b2)V 12(b1, b2))

U2(0, 0, b1, b2) = φ2(p1(·), p2(·); 0, 0, b1, b2)p2(·) + β(φ0(p1(·), p2(·); 0, 0, b1, b2)V 20(b1, b2)

+ φ1(p1(·), p2(·); 0, 0, b1, b2)V 21(b1, b2) + φ2(p1(·), p2(·); 0, 0, b1, b2)V 22(b1, b2))

where p1(·) and p2(·) are shorthand for p1(0, 0, b1, b2) and p2(0, 0, b1, b2), respectively. Compute analogously the
value functions given compatible products, U 1(1, 1, b1, b2) and U 2(1, 1, b1, b2), in state (b1, b2) ∈ B�.

(iv) Determine compatibility decisions in state (b1, b2) ∈ B�:

d12(b1, b2) = d21(b1, b2)

=
{

1 if Ul(1, 1, b1, b2) > Ul(0, 0, b1, b2), U2(1, 1, b1, b2) > U2(0, 0, b1, b2),

0 otherwise.

Note that d12(b1, b2) = d21(b1, b2) = 1 if and only if both firms strictly prefer compatible over incompatible products,
meaning that neither firm is willing to deviate from compatibility and that ties are broken in favor of incompatibility.

(v) Compute the value functions in state (b1, b2) ∈ B�:

V1(b1, b2) = U1(d12(b1, b2), d21(b1, b2), b1, b2),

V2(b1, b2) = U2(d12(b1, b2), d21(b1, b2), b1, b2).

Once the computations for a state are completed, the algorithm moves on to another state. After all states have
been visited, the algorithm updates the current guess for the value functions by assigning Ṽ1(b1, b2) ← V1(b1, b2) and
Ṽ2(b1, b2) ← V2(b1, b2), where (b1, b2) ∈ B�. This completes the iteration. Our procedure is thus a Gauss-Jacobi scheme.
See Judd (1998) for a comparison of Gauss-Jacobi and Gauss-Seidel schemes.

The algorithm continues to iterate until the relative change in the value and the policy functions from one iteration
to the next is below a prespecified tolerance. See Doraszelski and Judd (2004) for a detailed discussion of stopping
criteria.
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Appendix B. Static equilibrium: business gift effect

In what follows, we provide sufficient conditions for the business gift effect to harm the firm with the larger installed base.
Let N = 2 and consider the effect on, say, firm 1’s demand from having compatible instead of incompatible products:

φ1(p1, p2; (1, 1), (b1, b2)) − φ1(p1, p2; (0, 0), (b1, b2))

= exp(θg(b1 + λb2) − p1)

exp(v0) + exp(θg(b1 + λb2) − p1) + exp(θg(b2 + λb1) − p2)

− exp(θg(b1) − p1)

exp(v0) + exp(θg(b1) − p1) + exp(θg(b2) − p2)
.

Rearranging yields:

φ1(p1, p2; (1, 1), (b1, b2)) − φ1(p1, p2; (0, 0), (b1, b2))

=
[

exp(θg(b1 + λb2) − p1) + exp(θg(b2 + λb1) − p2)

exp(v0) + exp(θg(b1 + λb2) − p1) + exp(θg(b2 + λb1) − p2)

]

×
[

exp(θg(b1 + λb2) − p1)

exp(θg(b1 + λb2) − p1) + exp(θg(b2 + λb1) − p2)

]

−
[

exp(θg(b1) − p1) + exp(θg(b2) − p2)

exp(v0) + exp(θg(b1) − p1) + exp(θg(b2) − p2)

]
×

[
exp(θg(b1) − p1)

exp(θg(b1) − p1) + exp(θg(b2) − p2)

]

= �c(b1, b2, λ)	c(b1, b2, λ) − �in(b1, b2)	in(b1, b2).

�c (b1, b2, λ) and �in (b1, b2) measure the market size for the case of compatible and incompatible products,
respectively, in terms of total demand for the two firms as a proportion of total demand including the outside option. The
market expansion effect from making products compatible is then necessarily positive if

�c(b1, b2, λ) − �in(b1, b2) = exp(θg(b1 + λb2) − p1) + exp(θg(b2 + λb1) − p2)

exp(v0) + exp(θg(b1 + λb2) − p1) + exp(θg(b2 + λb1) − p2)

− exp(θg(b1) − p1) + exp(θg(b2) − p2)

exp(v0) + exp(θg(b1) − p1) + exp(θg(b2) − p2)
> 0.

This is true as long as λ > 0 and g′ > 0.
The business gift effect concerns the impact of compatibility on each firm’s share of market demand (excluding the

outside option). It is measured by

	c(b1, b2, λ) − 	in(b1, b2) = exp(θg(b1 + λb2) − p1)

exp(θg(b1 + λb2) − p1) + exp(θg(b2 + λb1) − p2)

− exp(θg(b1) − p1)

exp(θg(b1) − p1) + exp(θg(b2) − p2)
.

Because 	c (b1, b2, 0) = 	in (b1, b2), we have

	c(b1, b2, λ) = 	in(b1, b2) +
∫ λ

0

(
∂	c(b1, b2, λ

′)

∂λ′

)
dλ′.

Moreover, because

∂	c(b1, b2, λ)

∂λ
= exp(θg(b1 + λb2) − p1) exp(θg(b2 + λb1) − p2)

[exp(θg(b1 + λb2) − p1) + exp(θg(b2 + λb1) − p2)]2
× θ [b2g′(b1 + λb2) − b1g′(b2 + λb1)],

we have

sign

{
∂	c(b1, b2, λ)

∂λ

}
= sign{b2g′(b1 + λb2) − b1g′(b2 + λb1)}. (B1)

It follows that if b2g′(b1 + λ′ b2) − b1g′(b2 + λ′ b1) ≷ 0 for all λ′ ∈ (0, λ), then 	c (b1, b2, λ) −	in (b1, b2) ≷ 0.
The business gift effect is said to harm the firm with the larger installed base when its market share declines with

compatibility. That is, if b1 > b2, then 	c (b1, b2, λ) − 	in (b1, b2) < 0. Using (B1), a sufficient condition is

b2g′(b1 + λb2) < b1g′(b2 + λb1), λ ∈ (0, 1). (B2)

Because b1 > b2, a sufficient condition for (B2) is

g′(b2 + λb1) ≥ g′(b1 + λb2), λ ∈ (0, 1). (B3)
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Because b1 > b2 implies b1 + λb2 ≥ b2 + λb1, (B3) holds when g is linear or concave. Thus, if there is a constant or
diminishing marginal effect of the installed base on a product’s value, then the business gift effect harms the firm with
the larger installed base and benefits the firm with the smaller installed base.

The business gift effect also harms the larger firm when spillovers are complete (λ = 1):

	c(b1, b2, 1) − 	in(b1, b2) < 0

⇔ exp(θg(b1 + b2) − p1)

exp(θg(b1 + b2) − p1) + exp(θg(b2 + b1) − p2)
<

exp(θg(b1) − p1)

exp(θg(b1) − p1) + exp(θg(b2) − p2)

⇔ exp(θg(b1 + b2) − p1) exp(θg(b2) − p2) < exp(θg(b1) − p1) exp(θg(b2 + b1) − p2)

⇔ exp(θg(b1 + b2) − p1 + θg(b2) − p2) < exp(θg(b1) − p1 + θg(b2 + b1) − p2)

⇔ g(b2) < g(b1) ⇔ b2 < b1

because g′ > 0.
In sum, product compatibility reduces the market share of the firm with the larger installed base when either g

is linear or concave and/or λ is sufficiently close to one. For the business gift effect to instead imply that the smaller
firm’s market share is reduced with compatible products, necessary conditions are that λ � 1 and g is sufficiently convex.
However, we do not yet have a numerical that shows that the business gift effect can harm the smaller firm.

Appendix C. Dynamic equilibrium: Flat and Rising equilibria

In the main article, we focus on Tipping and Compatibility equilibria in order to showcase the primary dynamic forces
of our model. Table C1 reports the type of equilibrium for an array of values for λ ∈ {0, .5, 1}, θ ∈ {1, 2, 3, 4}, and
δ ∈ {0, .01 , . . . , .2}. As can be seen, Tipping and Compatibility equilibria arise in a part of the parameter space where
compatibility matters, network effects are not weak, and the rate of customer turnover is neither too low (so that the state
stays away from the bounds) nor too high (so the “investment” incentive is not weak). Outside this region, other types of
equilibria arise. Below we discuss these Flat and Rising equilibria in more detail.

It is important to keep in mind that the types of equilibria, helpful as they are in understanding the range of behaviors
that can occur, lie on a continuum and thus morph into each other as we change the parameter values.

A Flat equilibrium is a modest perturbation of a static equilibrium. Figure C1 presents an illustrative example.
Not surprisingly, a Flat equilibrium arises when dynamic effects are minimal because the network effect is weak (θ is
low), spillovers are absent (λ = 0), or customer turnover is high (δ is high). Note that when δ is high, there is little point
for firms to compete aggressively for customers in order to build an installed base because the gains are likely to fritter

TABLE C1 Types of Equilibria: Flat (F), Rising (R), Tipping (T), and Compatibility (C)

λ = 0

θ\δ 0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .11 .12 .13 .14 .15 .16 .17 .18 .19 .20

1 F F F F F F F F F F F F F F F F F F F F F
2 R R R R R R R R R R R R R R R R R R R R R
3 R R R RT RT T T T T T T T T T T T T T T T T
4 R R R RT RT T T T T T T T T T T T T T T T T

λ = .5

θ\δ 0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .11 .12 .13 .14 .15 .16 .17 .18 .19 .20

1 C C C C C C C C C C C C C C C C C C C C C
2 C C C C C C C C C C C C C C C C C C C C C
3 C C R RT RT T T T T T TC TC C C C C C C C C C
4 R R R RT RT T T T T T T T T T T T T T T T T

λ = 1

θ\δ 0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .11 .12 .13 .14 .15 .16 .17 .18 .19 .20

1 C C C C C C C C C C C C C C C C C C C C C
2 C C C C C C C C C C C C C C C C C C C C C
3 C C C RT RT T T C C C C C C C C C C C C C C
4 R R R RT RT T T T T T C C C C C C C C C C C

Multiple entries indicate that the equilibrium morphs from one type to another. θ ∈ {1, 2, 3, 4}, λ ∈ {0, .5, 1},
δ∈ {0, .20 , . . . , .20}.
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FIGURE C1

FLAT EQUILIBRIUM
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Compatibility (∗ indicates compatible products) and price, transient and limit distribution. θ = 1, λ = 0, δ = .01.
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FIGURE C2

RISING EQUILIBRIUM
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Compatibility (∗ indicates compatible products) and price, transient and limit distribution. θ = 3, λ = 0, δ = .01.
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away due to customer turnover; in other words, the return to investment is low when the depreciation rate is high. Given
that in a Flat equilibrium a firm largely ignores its rival’s installed base when setting its own price, it is not surprising that
the industry evolves toward a symmetric structure. Figure C1 illustrates.

A Rising equilibrium is characterized by a fairly monotonic policy function for which price is increasing in a
firm’s own base but is relatively insensitive to its rival’s base; an example is shown in Figure C2. Products are typically
incompatible. This equilibrium arises when compatibility does not impact demand (λ = 0) or when the rate of customer
turnover rate is very low. Again, the industry evolves toward a symmetric structure.

Appendix D. Welfare: consumer surplus

Given our demand specification, the expected consumer surplus in state b is (Anderson, de Palma, and Thisse 1992,
p. 45)

w(b) = ln

(
exp(v0) +

N∑
i=1

exp

(
vi + θg

(
bi + λ

∑
j �=i

dijdjib j

)
− pi

))
·

Let W (b) denote the expected net present value of consumer surplus in state b defined as

W (b) = E

( ∞∑
t=0

β tw(bt ) | b0 = b

)
,

where bt is the state in period t. Theorem 3.22 in Kulkarni (1995) shows that W (b) satisfies the recursive equation

W (b) = w(b) + β
∑
b′∈B

qb,b′ W (b′),

where B = {(b1, b2, . . . . , bN ) ∈ {0, 1 , . . . , M}N} is the state space and qb,b′ is the probability that next period’s state is
b′ given that this period’s state is b. This equation can be written in matrix form as

(I − βQ)W = w,

where W and w are column vectors and Q is a square matrix. Because Q is a stochastic matrix and β ∈ [0, 1), I − βQ is
invertible and we can compute the expected net present value of consumer surplus as

W = (I − βQ)−1w.
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