WZB/RNIC Conference

Joe Harringtor

Introduction

Mode

Equilibrium

Numerical Analysis

Preliminar<u>.</u> Results

Future Directions

Antitrust Enforcement and Corporate Leniency Programs

Joe Harrington (joint with Myong Chang)

"Deterrence in Competition Policy" 15th WZB Conference on Markets and Politics 2nd Conference of the Research Network on Innovation and Competition Policy

October 17-18, 2008

Introduction Challenges to Deterring Collusion

WZB/RNIC Conference

Joe Harrington

Introduction

Mode

Equilibrium

Numerica Analysis

Preliminar Results

Future Directions

Challenge of ideas

- Challenge of measurement
- On the second second

Introduction Challenges to Deterring Collusion: Ideas

WZB/RNIC Conference

Joe Harrington

Introduction

Mode

Equilibrium

Numerical Analysis

Preliminar<u>.</u> Results

- Challenge: Developing new policies.
- With an upper bound on penalties, it is critical to increase the probability that penalties are levied.
- Examples
 - Leniency programs
 - Whistleblowers
 - Screening

Introduction Challenges to Deterring Collusion: Measurement

WZB/RNIC Conference

Joe Harrington

Introduction

Mode

Equilibrium

Numerical Analysis

Preliminary Results

- Challenge: Determining when a policy works.
- Policy objective is to impact the population of cartels, including
 - number of cartels
 - average duration of cartels
 - average overcharge
- Population of cartels is not observed, only the population of *discovered* cartels.

Introduction Challenges to Deterring Collusion: Measurement

WZB/RNIC Conference

Joe Harrington

Introduction

Mode

Equilibrium

Numerical Analysis

Preliminar<u>.</u> Results

- Number of discovered cartels may not be a good proxy for number of cartels.
- In response to a new policy, the number of discovered cartels could fall because
 - the policy is **effective** and there are fewer cartels
 - the policy is **ineffective** and thus fewer cartels are caught and convicted.
- The population of discovered cartels may not be a random sample of the population of cartels.
 - Unstable cartels may collapse before being caught \Rightarrow over-sampling more stable cartels.
 - Stable cartels may avoid detection⇒ over-sampling less stable cartels.

Introduction Challenges to Deterring Collusion: Implementation

WZB/RNIC Conference

Joe Harrington

Introduction

Model

Equilibrium

Numerical Analysis

Preliminar Results

- Challenge: Having the competition authority properly implement a policy.
- Proper implementation includes
 - effective execution of the program itself (e.g., leniency program)
 - proper selection of complementary instruments (e.g., prosecution of non-leniency cases)

Introduction Challenges to Deterring Collusion: Implementation

WZB/RNIC Conference

Joe Harrington

Introduction

- Mode
- Equilibrium
- Numerical Analysis
- Preliminar<u>.</u> Results
- Future Directions

- Example: leniency program
- An abundance of leniency applications may cause the EC to reduce how many non-leniency cases it pursues.
- This could weaken the deterrence of relatively stable cartels.
- Would not an optimizing EC choose enforcement to minimize the cartel rate?
- Why should the EC try to minimize the cartel rate?

Introduction Objective of the Competition Authority

WZB/RNIC Conference

Joe Harrington

Introduction

Mode

Equilibrium

Numerical Analysis

Preliminar<u>.</u> Results

- Taking a career concerns perspective,
 - the CA can only be rewarded based on *observable* measures of performance
 - the cartel rate is not observable
 - therefore, the CA will not be concerned with the cartel rate
- Will the CA undervalue deterrence?
- Vitamins: US DOJ and Hoffman La Roche.
 - Guidelines: Fine between \$1.3B and \$2.6B.
 - Actual fine: \$0.5B.
- Proper design of a policy should take into account the incentives of the CA.

Introduction Overview of Research

WZB/RNIC Conference

Joe Harrington

Introduction

Mode

Equilibrium

Numerical Analysis

Preliminar<u>:</u> Results

- Competition authority faces a resource constraint
 - Firms use the leniency program if they think it is sufficiently likely they'll be penalized.
 - Likelihood of being penalized depends on the CA's caseload which includes both leniency and non-leniency cases.
- Competition authority influences its caseload.
- Main findings
 - Holding the CA's enforcement policy fixed, a leniency program lowers the cartel rate.
 - Allowing the CA to adjust its enforcement policy, a leniency program can either raise or lower the cartel rate.

WZB/RNIC Conference

Joe Harrington

Introduction

Model

Equilibrium

Numerical Analysis

Preliminar<u>.</u> Results

- In each market, *n* firms interact in a Prisoners' Dilemma *collude* or *compete*.
 - All collude: each firm earns $\pi > 0$.
 - All compete: each firm earns $\alpha \pi$, $\alpha \in [0, 1)$.
 - A firm competes and all others collude: deviator earns $\eta \pi$, $\eta > 1$.
- Stochastic market conditions
 - π is *iid* with cdf $H: [\underline{\pi}, \overline{\pi}] \rightarrow [0, 1]$.
 - $\mu \equiv \int \pi H'(\pi) d\pi$.
 - π is observed prior to firms deciding between $\mathit{collude}$ and $\mathit{compete}$

Model Firm Environment

WZB/RNIC Conference

- Joe Harringtor
- Introduction
- Model
- Equilibrium
- Numerical Analysis
- Preliminar<u>.</u> Results
- Future Directions

- State of an industry: *cartel* or *non-cartel*.
- If firms are not cartelized then each firm earns $\alpha\pi$.
- If firms are cartelized then each firm decides
 - to collude or compete and
 - whether to apply for leniency.
- Penalization leniency program is not used.
 - Cartel is discovered, prosecuted, and convicted with probability $\sigma \in [0,1)$.
 - If convicted, each firm pays a (per period) penalty of F.
- Penalization leniency program is used.
 - First firm "in the door" receives a penalty of θF , $\theta \in [0, 1]$.
 - All other firms pay F.

Model Evolution of Cartel Status

WZB/RNIC Conference

Joe Harringtor

Introduction

Model

Equilibrium

Numerical Analysis

Preliminar Results

- If an industry enters the period as a cartel then it exits the period as a cartel iff
 - all firms chose *collude*
 - no firm applied for leniency
 - the CA did not discover, prosecute, and convict.
- If an industry enters the period not as a cartel then
 - with probability κ it becomes a cartel
 - $\bullet\,$ with probability $1-\kappa\,$ it remains a competitive industry
- Industry heterogeneity
 - Industry type: η controls the propensity to cheat.
 - Distribution of industries, cdf $G: \left[\underline{\eta}, \overline{\eta}\right] \rightarrow [0, 1]$.

Model Sequence of Events

Model Antitrust Enforcement Technology

WZB/RNIC Conference

- Joe Harrington
- Introduction
- Model
- Equilibrium
- Numerica Analysis
- Preliminar Results
- Future Directions

- σ = q × r × s is the probability that a cartel pays penalties (when no firm used the leniency program).
 - q is the probability the cartel is discovered
 - r is the probability the CA prosecutes a discovered cartel
 - *s* is the probability that the CA is successful in a prosecution
- Probability of a conviction:

$$s = p(\lambda L + R) = rac{ au}{\xi + v(\lambda L + R)^{
ho}}$$

- L is the number (or mass) of leniency cases
- R is the number of non-leniency cases
- $\lambda \in [extsf{0}, extsf{1}]$, $v > extsf{0}$, $ho \geq extsf{1}$, $au \in (extsf{0}, extsf{1}]$, $\xi \geq au$

Equilibrium Collusion

WZB/RNIC Conference

- Joe Harringtor
- Introduction
- Mode

Equilibrium

- Numerical Analysis
- Preliminar Results
- Future Directions

- Y is firm value when firms are in the cartel state.
- W is firm value when firms are not in the cartel state.
- Incentive compatibility constraint:

$$(1-\delta) \pi + \delta [(1-\sigma) Y + \sigma (W-F)] \ge (1-\delta) \eta \pi + \delta [W - \min \{\sigma F, \theta F\}]$$

• Endogenizing penalty: $F = \gamma \left(Y - \alpha \mu\right)$, $\gamma > 0$.

$$\pi \leq \frac{(Y - W) - \delta [\sigma - \min \{\sigma, \theta\}] \gamma (Y - \alpha \mu)}{(1 - \delta) (\eta - 1)}$$

$$\pi \leq \phi (Y, W, \eta)$$

Equilibrium

WZB/RNIC Conference

Joe Harrington

Introduction

Mode

Equilibrium

Numerica Analysis

Preliminar Results

Future Directions

• (Y, W) are equilibrium values iff:

$$W = (1 - \kappa) \left[(1 - \delta) \alpha \mu + \delta W \right] + \kappa Y$$
 (1)

$$Y = \int_{\underline{\pi}}^{\phi(Y,\sigma,\eta)} \{ (1-\delta) \pi + \delta [(1-\sigma) Y + \sigma (W-F)] \}$$
(2)

$$\times H'(\pi) d\pi + \int_{\phi(Y,\sigma,\eta)}^{\overline{\pi}} [(1-\delta) \alpha \pi + \delta W - \delta \beta (\sigma,\theta) F] H'(\pi) d\pi$$

• Y* is the maximal solution:

 $Y^{*}\left(\sigma,\eta\right)\equiv\max\left\{Y\in\left[\alpha\mu,\mu\right]:\left(Y,W\right) \text{ solve } (1)\text{-}(2)\right\}.$

Equilibrium Markov Process on Cartel Birth and Death

WZB/RNIC Conference

Joe Harrington

Introduction

Mode

Equilibrium

Numerical Analysis

Preliminar<u>.</u> Results

Future Directions • Incentive compatibility constraint:

$$\pi \leq \phi\left(Y^{*}\left(\sigma,\eta\right),W^{*}\left(\sigma,\eta\right),\eta
ight)\equiv\phi^{*}\left(\sigma,\eta
ight)$$

- $C(\sigma, \eta)$ is the proportion of cartels among type- η industries.
- Stationary proportion of type-η industries which are not cartelized:

$$1 - C(\sigma, \eta) = [1 - C(\sigma, \eta)] \times \\ [(1 - \kappa) + \kappa (1 - H(\phi^*)) + \kappa H(\phi^*) \sigma] \\ + C(\sigma, \eta) [(1 - H(\phi^*)) + H(\phi^*) \sigma]$$

- κ is the probability a competitive industry cartelizes.
- $H(\phi^*)$ is the probability that a cartel internally collapses.
- σ is the probability that a cartel collapses because it is convicted.

Equilibrium Stationary Distribution on Cartels

WZB/RNIC Conference

Joe Harrington

Introduction

Mode

Equilibrium

Numerical Analysis

Preliminar Results

Future Directions

• Solve for
$$C(\sigma, \eta)$$
 :

$$C(\sigma,\eta) = \frac{\kappa H(\phi^*(\sigma,\eta))}{1 - (1 - \sigma - \kappa) H(\phi^*(\sigma,\eta))}$$

• Rate of cartelized industries:

$$C(\sigma) = \int_{\underline{\eta}}^{\overline{\eta}} C(\sigma, \eta) G'(\eta) d\eta$$

=
$$\int_{\underline{\eta}}^{\overline{\eta}} \left[\frac{\kappa H(\phi^*(\sigma, \eta))}{1 - (1 - \sigma - \kappa) H(\phi^*(\sigma, \eta))} \right] G'(\eta) d\eta$$

Equilibrium Probability of Conviction

WZB/RNIC Conference

Joe Harringtor

Introduction

Mode

Equilibrium

Numerical Analysis

Preliminar Results

Future Directions

- $\sigma = q \times r \times s$ is the probability that a cartel is discovered (q), prosecuted (r), and convicted (s).
- Leniency cases:

$$L(qrs) = \int_{\underline{\eta}}^{\overline{\eta}} \left[1 - H(\phi^*(qrs,\eta))\right] C(qrs,\eta) G'(\eta) d\eta.$$

Non-leniency cases:

$$R(qrs) = qrC(qrs)$$
.

Equilibrium Conviction and Enforcement Rate

WZB/RNIC Conference

Joe Harringtor

Introduction

Mode

Equilibrium

Numerical Analysis

Preliminar Results

Future Directions • Equilibrium conviction rate, $s^*(r)$:

$$\mathbf{s}^{*}=\mathbf{p}\left(\lambda L\left(\mathbf{qrs}^{*}
ight)+\mathbf{R}\left(\mathbf{qrs}^{*}
ight)
ight).$$

• Optimal enforcement (or prosecution) rate:

 $r^{*} = \arg \max L\left(qrs^{*}\left(r\right)\right) + qrs^{*}\left(r\right)C\left(qrs^{*}\left(r\right)\right).$

Numerical Analysis Parameterization

WZB/RNIC Conference

Joe Harrington

Introduction

Model

Equilibrium

Numerical Analysis

Preliminary Results

Future Directions

• Leniency policy

- A firm with leniency pays θF .
- A firm without leniency pays F.
- Policy comparison
 - No leniency: $\theta = 1$.
 - Full leniency: $\theta = 0$.
- Parameters
 - Probability a cartel is discovered: q = .2
 - Probability a competitive industry cartelizes: $\kappa = .05$
 - Market conditions: $H(\pi): [1,\infty) \to [0,1]$ is a log-normal distribution.
 - Industry types: $G(\eta):[1.1,\infty)\to [0,1]$ is a log-normal distribution.

Numerical Analysis Method

WZB/RNIC Conference

Joe Harrington

Introductio

Mode

Equilibrium

Numerical Analysis

Preliminar Results

Future Directions

- Given σ (= q × r × s), solve for equilibrium collusive behavior, φ^{*} (σ, η), for each industry type η. Collude iff π ≤ φ^{*} (σ, η).
- Given $\phi^*(\sigma, \eta)$, define the Markov process on cartel birth and death. Solve for the stationary distribution on cartels for each industry type η and aggregate over types to derive the stationary cartel rate, $C(\sigma)$.

• Given $C(\sigma)$, solve for the equilibrium conviction rate, s^* :

$$s^{*} = p\left(\lambda L\left(qrs^{*}
ight) + R\left(qrs^{*}
ight)
ight)$$

Given s* (r), solve for the value for r which maximizes the antitrust authority's objective:

$$r^{*} = rg\max L\left(qrs^{*}\left(r
ight)
ight) + qrs^{*}\left(r
ight) C\left(qrs^{*}\left(r
ight)
ight)$$

WZB/RNIC Conference

Joe Harringtor

Introduction

Mode

Equilibrium

Numerica Analysis

Preliminar Results

Table 1: Case of No Leniency Program ($ heta$	$\theta = 1)$
--	---------------

r	prob. of	prob. of	cartel rate	cartel
	conviction	penalties		duration
0%	.801	.000	.326	155.57
10%	.691	.014	.230	42.54
20%	.613	.025	.180	26.92
30%	.562	.034	.149	20.49
40%	.530	.042	.127	16.78
50%	.512	.051	.108	14.17
60%	.508	.061	.091	12.10
70%	.520	.073	.075	10.27
80%	.547	.088	.059	8.68
90%	.578	.104	.047	7.37
100%	.615	.123	.036	6.28

WZB/RNIC Conference

Joe Harringtoi

Introduction

Model

Equilibriun

Numerica Analysis

Preliminar Results

Future Directions Table 2: Case of Full Leniency Program (heta=0)

r	prob. of	prob. of	cartal rate	cartel
	conviction	penalties*		duration
0%	.801	.000	.326	155.57
10%	.707	.024	.163	46.27
20%	.674	.040	.113	26.97
30%	.666	.056	.081	18.82
40%	.682	.074	.056	14.01
50%	.711	.095	.036	10.82
60%	.748	.119	.020	8.59
70%	.775	.145	.011	7.01
80%	.789	.174	.005	5.82
90%	.799	.204	.001	4.92
100%	.801	.277	.0001	3.62

*Includes both leniency and non-leniency cases.

WZB/RNIC Conference

Joe Harringtor

Introduction

Mode

Equilibrium

Numerical Analysis

Preliminary Results

Future Directions Property 1 Given the competition authority's enforcement policy (i.e., r is fixed), the introduction of a leniency program reduces the cartel rate.

WZB/RNIC Conference

Joe Harringtor

Introduction

Mode

Equilibrium

Numerical Analysis

Preliminary Results

Future Directions Property 1 Given the competition authority's enforcement policy (i.e., *r* is fixed), the introduction of a leniency program reduces the cartel rate.

Property 2 Generally, the introduction of a leniency program results in the competition authority pursuing a less aggressive enforcement policy (i.e., it prosecutes a smaller fraction of non-leniency cases).

WZB/RNIC Conference

Joe Harrington

Introduction

Mode

Equilibrium

Numerica Analysis

Preliminar Results

Future Directions

Table 3: Effect of a Leniency Program on the Cartel Rate

		cartel rate ($r = r_{NL}^*$)			
		20			cartel
ρ	r_{NL}^*	lonionav	leniency	r_L^*	rate
		leffiency			$(r = r_L^*)$
1.2	50%	.240	.141	90%	.133
1.3	60%	.203	.065	40%	.101
1.4	80%	.139	.005	30%	.094
1.5	60%	.091	.020	30%	.081
1.6	50%	.087	.032	20%	.107
1.7	40%	.099	.047	20%	.105
1.8	40%	.093	.044	20%	.101
1.9	40%	.091	.044	20%	.101
2.0	40%	.089	.044	20%	.100
NL = no leniency program, $L =$ leniency program					

WZB/RNIC Conference

Joe Harrington

Introduction

Mode

Equilibrium

Numerical Analysis

Preliminary Results

Future Directions Property 1 Given the competition authority's enforcement policy (i.e., *r* is fixed), the introduction of a leniency program reduces the cartel rate.

Property 2 Generally, the introduction of a leniency program results in the competition authority pursuing a less aggressive enforcement policy (i.e., it prosecutes a smaller fraction of non-leniency cases).

Property 3 When the competition authority chooses its optimal enforcement policy, the introduction of a leniency program can either lower or raise the cartel rate (depending on the parameter values).

Future Directions

WZB/RNIC Conference

Joe Harrington

- Introduction
- Mode
- Equilibrium
- Numerical Analysis
- Preliminar Results

- With a leniency program, should a competition authority's budget be increased or decreased?
- What is the impact of a leniency program that accepts applications after an investigation has started?
- What are alternative objectives for a competition authority?
- What is the optimal incentive scheme for a competition authority?